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ABSTRACT

This thesis investigates localized and contextual learning to tackle the out-of-
distribution (OOD) problem, which is central to a model’s capability to adapt to previ-
ously unseen samples for lifelong learning. This thesis aims to understand the knowledge
reuse capability and the emergent generality within a collection of neural modules. This
study is closely related to brain mechanisms of attention and memory, by incorporating
the properties of Global Workspace (GW) in the prefrontal cortex and long-term mem-
ory (LTM) in the Hippocampus. The objective is to construct intelligent systems that
possess concise representations of the world, enabling them to acquire new tasks more
e�ciently, with reduced processing time and minimized interference among various areas
of knowledge.

To this end, I first study knowledge transfer among a collection of expert models
that can only observe partial environments in a federated learning setting. I demon-
strate that generalization can be achieved through the coordination of localized models
without global objectives. Building upon this observation, I propose a novel federated
domain generalization method for learning a global model by distilling domain-invariant
knowledge from various localized models.

Another approach to localized learning I proposed is the Markov chain-based Homoge-
neous Learning, where a meta-observer aims to learn an e�cient communication policy
of individual models. To determine whether such localized learning can also enhance
the generality of foundational models like Transformers, I introduce a novel Associative
Transformer that learns distinct priors to guide selective attentions and reuse knowledge
from previous observations based on associative memory-based replay. Importantly, the
sparse attention with a bottleneck and the memory replay can find resonance with the
working memory in the GW and the LTM in the Hippocampus, respectively. The consol-
idated implementation of the GW and LTM based on neural networks has demonstrated
improved model performance and interpretability across a wide spectrum of tasks, com-
pared to various existing Transformer architectures. Finally, I investigate and reveal
potential risks associated with the localized learning methods that achieve emergent be-
havior of generalization through inter-module representation learning. Overall, this thesis
proposes a novel approach using modular and reusable neural knowledge to tackle the
OOD problem based on sparse attention and memory study in cognitive neuroscience.
I deeply believe this study will make a substantial contribution to our comprehension
of general intelligence in humans and mammals, as well as the development of intelli-
gent machines with the potential for lifelong learning and long-term memory in the near
future.
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Chapter 1

Introduction

1.1 Deep Neural Networks

Artificial Neural Networks (ANNs) are a fundamental component of machine
learning, inspired by the structure and functioning of the human brain. Neurons
in the brain create a network where each neuron possesses a singular axon that
branches out and connects with the dendrites of other neurons at synapses. At
these synapses, the coordinated firing patterns of extensive cell populations carry
information [1]. The mathematical model of such neural networks called the
perceptron was first proposed back in 1958 [2], which is a probabilistic model for
information storage and organization. The multi-layer perceptron [3] then adds
to the practicability of neural networks, as a useful alternative to traditional
statistical modeling techniques. Lecun et al. [4] presented deep neural networks
that allow computational models composed of multiple processing layers to learn
representations of data with multiple levels of abstraction.

Deep learning or deep neural networks (DNNs) consist of interconnected neu-
rons organized in three or more layers. Given an input x, DNNs forward the input
layer by layer and output a prediction ŷ. We can think of there are many knobs
in DNNs represented as the strength of connections between every two neurons i
and j, known as weights wi,j . The optimization processing or model training is
to find the optimum combination of these knobs through the process of the back-

propagation. The loss L between the model prediction ŷ and the ground truth
y such as a numerical label for an input sample is computed. The loss is then
propagated backward through the DNNs, allowing for the computation of gradi-
ents �wi,j = @L(y,ŷ)

@wi,j
for each weight with respect to the loss. The gradients are

then used to update the weights. The gradient computation and weight update
continue until the network converges to a desired performance, usually measured
by its performance in a held-out test dataset. There are many other important
factors to successfully training a model, such as designing the activation function
for each layer’s output, selecting the suitable weight update or optimization func-
tions, and so on. We refer to [5] for detailed explanations of DNNs and tuning of
architecture and parameters for di↵erent applications. We now introduce several
important architectures that are essential for the discussion of the projects in this
thesis. These include Convolutional Neural Networks, Vision Transformers, and
Hopfield networks.

1.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [4] represent a specialized class of neural
networks designed for processing data with a 2-dimensional structure. Besides
images with natural 2 dimensions, other data such as 1-D time-series data can

1



also be represented as 2-D data. In CNNs, we apply a mathematical operation
called the convolution that involves the element-wise multiplication of a filter
(or a kernel) with local regions of the input data, followed by the summation of
the results to produce feature maps. CNNs usually comprise multiple convolu-
tional layers followed by a pooling layer. The pooling layer reduces the spatial
dimensions of the convolutional layer output by selecting the maximum or aver-
age values from local regions. When the input data has a large dimension such
a high-resolution image, using the pooling layer can improve computational e�-
ciency. Additionally, several fully connected layers are typically employed at the
end of neural networks to process and transform the extracted features into one-
dimensional vectors for final predictions. This can be for either object recognition
or regression tasks.

1.1.2 Vision Transformers

Transformers [6, 7, 8, 9] leverage self-attention mechanisms to model long-term
dependencies among input sequence elements. Through self-attention, each el-
ement in the sequence can consider all others, enabling the model to capture
intricate relationships even between distant elements. Unlike models such as
CNNs with inherent inductive biases (the kernels in CNNs that process values
from local regions), Transformers do not possess preconceived assumptions about
the training data. Their flexibility lies in learning patterns exclusively from input
data, allowing them to excel in capturing complex relationships. However, this
flexibility necessitates a substantial amount of training data for e↵ective gen-
eralization, posing challenges in low-resource settings or when confronted with
out-of-distribution examples.

In computer vision, Vision Transformers (ViT) [9] tackle image classifica-
tion tasks by processing sequences of image patches. The pre-processing layer
partitions an image into non-overlapping patches, followed by a learnable linear
projection layer. Let x 2 RH⇥W⇥C be an input, where (H, W ) is the resolution
of the image and C is the number of channels. x is separated into a sequence
of patches xp 2 RN⇥(P 2

·C), where (P, P ) is the resolution of each image patch
and N = HW

P 2 is the number of patches. These patches are mapped to embed-
dings vp 2 RN⇥E with the linear projection. A learnable 1D position embedding
v0 2 RE is prepended to the patch embeddings to retain positional information,
which results in v 2 R(N+1)⇥E . The position embedding in ViT is crucial for pre-
serving the sequential order of input data, maintaining the spatial relationships
for tasks such as image recognition or classification.

ViT leverages the self-attention mechanism as the essential building blocks,
where each head maps a query and a set of key-value pairs to an output. The
patch embeddings are used to obtain the query, key, and value based on linear
transformations WQ

2 RE⇥D, WK
2 RE⇥D, and, W V

2 RE⇥D. We first com-

pute an attention mask using the query and key as follows softmax(
WQ

i v(WK
i v)T

p
D

).

Here, D represents the dimension of the projected query and key. The choice of
the denominator might influence the computed attention maps, with

p
D being a

commonly suggested default. Finally, the attention mask is applied to the value
to obtain the final output. To improve its performance, we can use A multiple
heads and concatenate all the outputs by the following

hi(v) = softmax(
WQ

i v(WK
i v)T

p
D

) W V
i v, (1.1)

Multi-head(v) = Concat(h1, . . . , hA) WO, (1.2)
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where WO is a linear transformation for outputs.
ViT has demonstrated superior performance in image classification tasks with

large-scale datasets. However, it is important to acknowledge that when trained
on mid-sized datasets such as ImageNet [10], without strong regularization, ViT
still shows a modest accuracy compared to CNNs models such as ResNets [11].

1.1.3 Hopfield Networks

Associative memory or content-addressable memory is a storage and retrieval sys-
tem where information is organized based on its relationships with other stored
data. The Hopfield network [12] serves as one type of associative memory model,
comprising interconnected neurons with symmetric weights. To store patterns,
this network employs one-shot learning by adjusting its weights according to
input patterns until a stable state is achieved. These patterns then settle into at-
tractors within the network’s dynamics, each with its basin of attraction. When
a test pattern falls within an attractor’s attraction region, the Hopfield network
adjusts its dynamics to recall the corresponding attractor using an energy func-
tion. During this process, the network aims to minimize the overall energy, with
lower energy signifying a more stable state and enabling the retrieval of stored
patterns.

Moreover, recent studies have explored modern variants of Hopfield networks
[13] and showed their close relation to the attention mechanism in Transformers.
The modern Hopfield networks employ an energy function as follows

E = �lse(�, XT ⇠) +
1

2
⇠T ⇠ + ��1logN +

1

2
⇣2, (1.3)

⇣ = max
i

|xi|, (1.4)

where lse is the log-sum-exp function, X = (x1, . . . , xN ), N is the number of total
stored patterns in the Hopfield networks, � is an inverse temperature variable, and
⇣ is the largest norm of all stored patterns. Then, the update equation to recall a
pattern from the Hopfield network can be derived as follows ⇠̂ = X · softmax(� ·

(XT ⇠)). The update equation shows similarity to the attention mechanism in
Transformer models. Depending on the value of �, the reconstructed input ⇠̂
can either represent a metastable state, combining various stored patterns, or a
single stored pattern. A large � reduces the likelihood of metastable states, while
a small � increases this likelihood.

1.1.4 Decentralized Neural Networks

Decentralized neural networks [14] are composed of independent neural network
modules. These models, in contrast to centralized counterparts relying on large-
scale training, aim to enhance performance by sharing local model weights, gra-
dients, and representations. One prominent example is Federated Learning (FL)
[15], where local models train on independent data distributions. By aggregating
these local model updates, FL facilitates the learning of a global model over the
entire data distribution without requiring access to local data.

In FL, the Parameter Server (PS) randomly selects k out of m clients at each
time step and broadcasts the current global model to these selected clients Ck.
Subsequently, each client i 2 Ck updates its received local copy of the global
model using its local dataset. To improve the performance of the global model,
all updates from these local models are collected and aggregated each round.

3



Specifically, Federated Averaging (FedAvg) [16] computes a weighted average of
the local updates as follows

W g
t+1 = W g

t +
X

i2Ck

Ni

N
(W i

t �W g
t ), (1.5)

where W g
t represents the weights of the global model at time step t, W g

t+1 rep-
resents the weights of the updated global model, W i

t represents the weights of
client i’s local model, and Ni and N represent the amount of training data for
client i and the total training data for all the selected clients, respectively.

1.2 Global Workspace Theory of the Mind

1.2.1 Working Memory

Studies in cognitive science and neuroscience have shown the pivotal role of work-
ing memory in the architecture of general cognitive abilities. Working memory
serves as a hub for the storage and manipulation of information essential for com-
plex cognitive tasks, such as attention, reasoning, and learning. It operates as
a sketchpad, allowing the brain to temporarily retain and manipulate relevant
information. An intriguing aspect of working memory is its constraint that we
usually can only hold a limited number of pieces of information simultaneously.
However, this ”bottleneck” property is rather than a defect but a critical fea-
ture for the cognitive system to manipulate information in real-time for tackling
novel situations. Generality, a hallmark of both natural and artificial intelligence,
demonstrates a close relationship with the functioning of working memory, high-
lighting its role in adaptability across diverse environments and challenges.

1.2.2 Properties of the Global Workspace

One of the long-standing theories in cognitive science aimed at explaining working
memory and the conscious sensation of manipulating information within working
memory is the Global Workspace Theory (GWT) [17, 18, 19, 20]. GWT intro-
duces a fundamental cognitive architecture for information processing within the
working memory of the human brain, where various specialized modules compete
to write information into a shared workspace through a communication bottle-
neck. The bottleneck facilitates the processing of content-addressable information
through attention [21, 22].

The four properties of the GWT [23] are 1) multiple specialised systems ca-
pable of operating in parallel (modules); 2) limited capacity workspace entailing
a bottleneck in information flow and a selective attention mechanism; 3) global
broadcast: availability of information in the workspace to all modules; 4) state-
dependent attention, giving rise to the capacity to use the workspace to query
modules in succession to perform complex tasks.

Studies in machine learning research, whether by happenstance or by design,
have been contributing to building an Artificial Global Workspace. The diverse
properties of the GWT have become a source of inspiration for investigations in
machine learning, particularly in areas such as modular neural networks [24, 25,
26, 27], context-dependent localized learning [28, 29, 30, 31, 32], sparse attention
mechanisms [33, 34, 35], and memory-augmented neural networks [36, 37, 38,
39, 40]. For instance, the Perceiver model [28] employed iterative cross-attention
with a latent array as priors, along with a latent transformation applied to these
priors, to e↵ectively capture dependencies across input data. Another noteworthy
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approach is Coordination [30], which utilized a bottleneck to encourage greater
flexibility and generalization by fostering competition among specialized modules.

1.3 Localized Learning

Localized Learning is a methodology enabling the acquisition of modules within
various contextual inputs, with the goal of functional specialisation, reusability,
and compositionality. The modular property encourages the emergence of gener-
alized behavior across these modules to achieve global objectives. This methodol-
ogy diverges from approaches centered on global optimization techniques, which
seek a single, overarching solution to a problem. Instead, localized learning con-
centrates on developing local, context-dependent solutions. This distinction pro-
vides several advantages. Firstly, it avoids the need for centralized computation,
rendering it well-suited for real-world deployment on a large scale. Secondly, the
modular and sparse characteristics of localized learning parallel the local and
asynchronous updates observed in biological synapses within the brain. Thirdly,
localized learning facilitates swift adaptation to new tasks by repurposing knowl-
edge components from prior experiences. Lastly, when augmented with long-term
memory, localized learning holds the promise of constructing a lifelong learning
intelligence by seamlessly integrating both rapid and gradual learning mecha-
nisms.

Localized Learning includes the study of inductive biases. The inductive bias
of a learning algorithm is the set of assumptions that the learner uses to predict
outputs of given inputs that it has not encountered [41]. Inductive biases encour-
age the learning algorithm to prioritize solutions with certain properties, since
algorithms that excel on certain distributions might perform less e↵ectively on
others. When presented with a dataset, multiple subnetworks (”winning tickets”)
in a dense, randomly-initialized, feed-forward network with comparable perfor-
mance on training points are possible, called the Lottery Ticket Hypothesis [42].
Given a finite training set, to generalize to new input data relies on some assump-
tions or inductive biases about the solution we are looking for [43]. Several of
the most promising inductive biases from studies of neuroscience are the Global
Workspace. For instance, utilizing various kinds of metadata about individual
neural network modules, such as measured performance and learned represen-
tations, has the potential to learn, select, or combine di↵erent neural network
modules e�ciently to solve a new task. The acquired knowledge from di↵erent
neural modules are leveraged for reasoning and planning in a more e�cient way.

Localized Learning encompasses a range of topics, such as inductive biases,
ensemble learning, decentralized learning, modular neural networks, scalability
through increased parallelism, knowledge plasticity, and reusability. In the sub-
sequent sections of this thesis, I will delve into various instances of Localized
Learning within both decentralized neural networks and Transformer models.
This exploration will include addressing challenges related to non-interference
knowledge transfer, optimizing knowledge reuse, understanding inductive biases
in Transformer training, and ensuring trustworthiness in the context of Localized
Learning. Finally, I conclude this thesis by discussing several future directions
of Localized Learning research for improving few-shot generalization and lifelong
memory formation capabilities of intelligent machines.
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Chapter 2

Central Hypotheses and Motivation

In this chapter, we review several critical hypotheses on tackling systematic gen-
eralization problems and discuss how localized learning in artificial neural net-
works with the properties of the Global Workspace (GW) is related to these
hypotheses. Systematic generalization refers to the ability of a learning system
to apply knowledge and skills systematically to new, unseen situations that share
structural similarities with those encountered during training. Several important
hypotheses on approaches to systematic generalization include the capability of
learning experience transfer (GW3: global broadcast: availability of informa-
tion in the workspace to all modules), inducing compositionality (GW1: multiple
specialized systems capable of operating in parallel), leveraging inductive biases
(GW2: limited capacity workspace entailing a bottleneck in information flow and
a selective attention mechanism; GW4: state-dependent attention, giving rise to
the capacity to use the workspace to query modules in succession to perform
complex tasks), and maintaining adversarial robustness.

2.1 Learning Experience Transfer

In complex and non-stable environments, one-size-fits-all solutions are often in-
su�cient. When the data distribution changes, the model usually su↵ers from
poor generality to the new data. Models should be capable of learning and adapt-
ing to new tasks quickly by leveraging knowledge gained from previous learning
experiences. Knowledge gained from one domain can be transferred to another,
provided there are shared underlying principles.

Such changes in the underlying statistical distribution of data are usually re-
ferred to as distributional shifts, including covariate shift, prior probability shift,
concept shift, and so on. To investigate the hypothesis that learning experience
transfer can facilitate model generalization, in Chapter 3, we explore a case of
multi-domain learning wherein data samples from various local models originate
from distinct domains. Each domain is characterized by some domain-specific
features.

To illustrate, consider a home robot undergoing training to navigate a new
house. The robot may utilize operating data from other houses acquired by
di↵erent robots to improve its performance in this new environment. However,
given the variations in room views and light conditions among di↵erent houses,
attempting to directly train a new model based on the knowledge gained from
other models becomes challenging. Knowledge transfer without regulation will
introduce negative transfer, diminishing a model’s adaptability to unseen tasks
and degrading its generality. This problem involving domain-specific features is
referred as domain shift problems.
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To be more concrete, the domain shift problem or the covariate shift problem
occurs when the relationships between input x and output y variables remain con-
sistent, but the input data itself has undergone a shift in its distribution. Given
a source domain S and a target domain T , we assume knowledge is transferred
from the source domain to the target domain. Then, the domain shit problem is
defined by PS(y|x) = PT (y|x), PS(x) 6= PT (x), where PS(·) is the source domain
distribution, and PT (·) is the target domain distribution.

2.2 Compositionality

Models should be able to generalize by combining basic elements in novel ways
to form more complex structures. The ability to understand and manipulate
complex structures relies on the compositionality of simpler, interpretable compo-
nents. Compositionality is frequently linked with constructing intelligent systems
through modular components or ”building blocks” that can be flexibly combined
to execute a diverse array of tasks. A pivotal advantage of compositionality is its
ability to enhance the e�ciency of learning and adaptation.

To investigate the hypothesis that compositionality can facilitate model gen-
eralization, in Chapter 4, we delve into a specific learning framework comprising
multiple neural networks organized in the structure of an acyclic graph. In partic-
ular, we explored the prior probability shift problem or the non-independent and
identically distributed (non-IID) data problem. The prior probability shift takes
place when the mapping of input variables to output variables remains consistent,
while the prevalence or prior probability of specific output classes changes, i.e.,
Pi(y|x) = Pj(y|x), Pi(y) 6= Pj(y). We assume that every pair of neural networks
in the learning framework satisfies this condition. Therefore, di↵erent neural
networks are trained on data from distinct class distributions.

Within this context, we introduce a novel methodology known as Homoge-
neous Learning [44]. In this approach, a local model is designated as the meta
for each training round, employing reinforcement learning to iteratively update a
global learning policy. The meta observes the states of other local models and its
surrounding environment, computing expected rewards for various actions based
on these observations. Then, the meta determines the optimal action by draw-
ing upon past experiences. The objective is to learn a global learning policy,
enabling the learning framework to e�ciently tackle di↵erent problems through
the planning and combination of various local neural network models.

2.3 Inductive Bias

Models with an inductive bias exhibit a preference toward certain types of gener-
alizations based on the structure of the training data. A well-designed inductive
bias can guide models to generalize in a manner consistent with the underly-
ing data distribution. Conventional deep neural networks usually incorporate
inductive biases into their architectures, such as convolutional layers focusing
on di↵erent image areas. This often results in superior performance in tasks
that align with the underlying assumptions or biases encoded in training data,
allowing the model to generalize more e↵ectively to new, unseen examples.

Nevertheless, Transformer models do not possess built-in inductive biases that
enable them to attend to di↵erent segments of the input based on inherent data
structures. This necessitates large-scale training of Transformer models to achieve
competitive performance with deep neural networks that have a built-in induc-
tive bias. To investigate the hypothesis that inductive biases can facilitate model

7



generalization, in Chapter 5, we demonstrate the functional and architectural
nuances of the Associative Transformer (AiT), a novel Transformer with imple-
mented inductive biases for contextual and localized learning through the acqui-
sition of a set of priors. AiT is a sparse representation learner, leveraging sparse
bottleneck attention enhanced by an attention balance loss to acquire naturally
emerging specialized priors. These priors guide attention over the input samples
and serve as attractors within the associative memory of a Hopfield network, en-
abling information broadcast from the workspace. The inductive biases induced
by these priors contribute to the model’s superior performance and generalization
in relational reasoning tasks, outperforming conventional Transformer models.

2.4 Adversarial Robustness

Models that demonstrate robust systematic generalization might be vulnerable
to adversarial attacks. In a system built on local contextual knowledge through
transfer learning and compositionality, weaknesses could potentially extend across
the entire system. An adversary might intrude into such a decentralized system
by exploiting a compromised local model as a backdoor, either by manipulating
its local training data or model weights. These injected poisonings could trigger
behaviors desired by the attacker and propagate their influence to other models
within the system through knowledge sharing and information broadcast.

To investigate the hypothesis that maintaining adversarial robustness is cru-
cial for artificial neural networks with the properties of the Global Workspace, we
delve into the trustworthiness of di↵erent localized learning systems in Chapters
6, 7, and 8. We investigate two types of poisoning attacks that can cause the mis-
behavior of these systems. Moreover, we propose a self-supervised decentralized
learning framework to enhance robustness to attacks in localized learning. This
framework also benefits from the learning experience transfer, compositionality,
and inductive biases. In this approach, no global supervision is required, and
all learning occurs with local supervision. The framework facilitates knowledge
sharing and can leverage large-scale training over distributed data sources. Data
from various modalities are processed by neural networks with specific inductive
biases, enabling the learning of contextual representations and enhancing overall
model performance.
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Chapter 3

Generalization and Transfer Learning

This chapter consolidates my work on multi-source domain adaptation in Feder-
ated Learning [45].

Multi-source domain adaptation has been intensively studied. The distribu-
tion shift in features inherent to specific domains causes the negative transfer
problem, degrading a model’s generality to unseen tasks. In Federated Learning
(FL), learned model parameters are shared to train a global model that lever-
ages the underlying knowledge across client models trained on separate data
domains. Nonetheless, the data confidentiality of FL hinders the e↵ectiveness of
traditional domain adaptation methods that require prior knowledge of di↵erent
domain data. We propose a new federated domain generalization method called
Federated Knowledge Alignment (FedKA). FedKA leverages feature distribution
matching in a global workspace such that the global model can learn domain-
invariant client features under the constraint of unknown client data. FedKA
employs a federated voting mechanism that generates target domain pseudo-
labels based on the consensus from clients to facilitate global model fine-tuning.
We performed extensive experiments, including an ablation study, to evaluate
the e↵ectiveness of the proposed method in both image and text classification
tasks using di↵erent model architectures. The empirical results show that FedKA
achieves performance gains of 8.8% and 3.5% in Digit-Five and O�ce-Caltech10,
respectively, and a gain of 0.7% in Amazon Review with extremely limited train-
ing data. Moreover, we studied the e↵ectiveness of FedKA in alleviating the
negative transfer of FL based on a new criterion called Group E↵ect. The results
show that FedKA can reduce negative transfer, improving the performance gain
via model aggregation by 4 times.

3.1 Domain Transfer in Federated Learning

Federated learning (FL) [16, 46] has been accelerating the collaboration among
di↵erent institutions with a shared interest in machine learning applications such
as privacy-preserving diagnosis of hospitals [47] and decentralized network intru-
sion detection [48]. One of the most challenging problems in FL is to improve
the generality in tackling client data from di↵erent domains. These di↵erent do-
mains are usually used for the same classification task but with particular sample
features under varying data collection conditions of clients. A naive averaging
of all clients’ model updates cannot guarantee the global model’s performance
in di↵erent tasks due to the problem of negative transfer[49]. In this regard,
the learned knowledge from a client might not facilitate the learning of others.
The e↵ectiveness of model sharing in FL regarding knowledge transferability to
an unseen task is of great importance to real-life application. For example, in
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Figure 3.1: The framework of Federated Knowledge Alignment (FedKA) consists
of three building blocks, i.e., Global Feature Disentangler, Embedding Match-
ing, and Federated Voting. FedKA leverages distributed data domains based on
feature distribution matching in a global workspace. The negative transfer is
alleviated by 1○ local model representation learning on client domains and 2○
global model fine-tuning on the unlabeled cloud domain.

medical diagnosis, images collected by di↵erent medical machines can vary in
sample quality. Client models learned on such diverse samples can diverge in the
parameter space. Simply aggregating these models will not guarantee a better
global model. Another example is connected autonomous vehicles based on FL.
The multi-agent systems learn to tackle di↵erent driving situations in di↵erent
cities and FL allows these agents to share the experience of driving in a new city.

Feature disentanglement is a common approach to alleviating problems of do-
main shift and negative transfer when encountering di↵erent domains, by separat-
ing domain-invariant features and domain-specific features from training samples
[5, 50, 51, 52]. Nevertheless, such a practice necessitates that di↵erent domain
data are centrally located at the same place for computation. In the above hospi-
tal and vehicle cases, feature disentanglement is unfeasible or impractical due to
either privacy concerns or communication overheads in data sharing. The di�-
culty in federated domain generalization is that the source domain data of clients
and the target domain data of a new task are usually separately located, which
hinders e↵ective knowledge sharing in FL. Moreover, the traditional model aggre-
gation in approaches such as Federated Averaging (FedAvg)[16] cannot guaran-
tee the improvement in the global model’s performance by sharing local models
trained on various client domains.

To this end, we propose Federated Knowledge Alignment (FedKA) (see Fig.
3.1) that alleviates negative transfer in FL improving the global model’s generality
to unseen tasks.

Overall, our main contributions are three-fold:
1) We proposed a novel domain generalization method FedKA in federated

learning under the constraint of unknown client data, mainly due to data confi-
dentiality. FedKA learns to reduce feature discrepancy between clients improving
the global model’s generality to tackle unseen tasks. (Section 3.3.2).

2) This work studied a new criterion for measuring negative transfer in feder-
ated learning (FL) called Group E↵ect, which throws light on the ine↵ectiveness
of model aggregation in FL when training on di↵erent client domains. This work

10



provided detailed formulations (Section 3.3.3) and evaluation of Group E↵ect in
FL (Section 3.4.5).

3) We performed extensive experiments on three di↵erent datasets, i.e., Digit-
Five, O�ce-Caltech10, and Amazon Review. We compared two di↵erent neural
network architectures for model sharing including a lightweight two-layer model
and a Resnet18 model. We demonstrated our method’s e↵ectiveness in improving
the global model’s prediction for various target tasks. (Section 3.4).

The remainder of this paper is structured as follows. Section 2 provides an
overview of federated learning and domain adaptation and presents relevant work
on the intersection of the two fields. Section 3 presents essential definitions and
technical underpinnings of the proposed method. Section 4 presents the results
of the empirical evaluation and the discussion of our main findings. Section 5
concludes the paper and provides future directions.

3.2 Related Work

Federated Learning

A distributed framework for machine learning (ML) [53] was introduced due to
the proliferation of ML applications in academia and industry. The parameter
server framework was further extended to a versatile and high-performance im-
plementation for distributed ML based on local training data [54]. Moreover,
Federated Learning (FL) [16] aims to train a model that learns a global prob-
ability distribution leveraging local model training on distributed data sources
and trained model parameter sharing. Nevertheless, it usually bears a degraded
global model performance when training on diversified client data [14]. There
have been many works studying imbalanced Non-IID data in FL [55, 56]. For
instance, federated group knowledge transfer (FedGKT)[57] leveraged Kullback
Leibler (KL) Divergence to measure the prediction loss between an edge model
and a cloud model, thus aligning knowledge of client models trained on Non-IID
samples and the global model. Unfortunately, there are still not many e↵orts on
the domain shift problem in FL, where each client owns data with domain-specific
features due to di↵erent data collection environments.

Domain Adaptation

Domain adaptation [58, 59, 60] is one type of transfer learning to perform knowl-
edge transfer from the source domain to the target domain. In this regard, a
reconstruction-based method with an encoder-decoder architecture aims to learn
a discriminative mapping of target samples to the source feature space, thus im-
proving generalization performance [61, 62]. However, the generative approach is
usually resource-consuming relying on computational capability. It is incompat-
ible with resource-constrained clients in FL, such as mobile devices. In contrast,
the method of feature disentanglement aims to distill features consistent across
di↵erent domains thus improving the transferability of learned features. There-
fore, the output of a model will remain una↵ected despite several domain-specific
feature changes. Deep Adaptation Networks (DAN)[63] trains two neural network
models on the source and target domains, respectively. Then, DAN applies the
multi-kernel Maximum Mean Discrepancy (MK-MMD) loss [64] to align features
extracted from di↵erent layers of the two models. A variant of this method [65]
aligns the joint distributions of multiple domain-specific layers across domains
using a Joint Maximum Mean Discrepancy (JMMD) criterion. Furthermore, Do-
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main Adversarial Neural Network (DANN)[66] leverages the domain confusion
loss and the classification loss. DANN trains a classifier that distinguishes be-
tween source domain features and target domain features with encoders that
distills representations indistinguishable by the domain classifier.

Domain Generalization in Federated Learning

The line of work in domain generalization for Federated Learning [58, 67] has
been studied recently. For example, Federated Adversarial Domain Adaptation
(FADA)[68] aims to tackle domain shift in FL through adversarial learning of
domain-invariant features. Moreover, [69] presented a reversed scenario of FADA,
where they tackled a multi-target domain adaptation problem for transferring
knowledge learned from a labeled cloud dataset to di↵erent client tasks.

Unlike the studies mentioned above, FedKA leverages interactive learning be-
tween clients and the cloud thus overcoming the challenge of data confidentiality
in FL. To improve the representation transferability, a client’s encoder learns to
align its output with the global embedding provided by the cloud. Simultaneously,
the global model learns a better representation of the target task via fine-tuning
based on the strategy of federated voting. Furthermore, to our best knowledge,
there are no existing e↵orts to measure negative transfer in FL. Therefore, we
propose Group E↵ect as an e↵ective criterion.

3.3 Method

In this section, we first define the multi-source domain adaptation problem in Fed-
erated Learning (FL). Then, we present the technical underpinnings of Federated
Knowledge Alignment (FedKA). Finally, we introduce our criteria for measuring
the e↵ectiveness of domain generalization methods in FL.

3.3.1 Multi-Source Domain Adaptation

We specifically consider a classification task with C categories. Let x 2 RV = X
be a sample and y 2 {1, 2, ..., C} = Y be a label. D consists of a collection of N
samples as D = {(xi, yi)}Ni=1. In unsupervised domain adaptation[70, 71], given
a source domain DS = (XS , YS) and a target domain DT = (XT , YT ) where the
labels YT are not provided, the goal is to learn the target conditional probability
distribution P (YT |XT ) in DT with the information gained from DS . The source
domain DS and target domain DT usually share the same support of the input
and output space X⇥Y , but their data have domain discrepancies with specified
styles, i.e., P (XS) 6= P (XT ).

A federated learning (FL) framework consists of the parameter server (PS)
and K clients. We suppose that each client k has a di↵erent source domain

D(k)
S = (X(k)

S , Y (k)
S ) and the PS has the unlabeled target domain DT = (XT ).

Let f be a neural network classifier that takes an input xi and outputs a C-
dimensional probability vector where the jth element of the vector represents
the probability that xi is recognized as class j. Then, the prediction is given by
ŷ = argmaxj f(x)j where f(x)j denotes the jth element of f(x).

A client usually cannot share D(k)
S with the PS nor other clients mainly due

to data confidentiality. Instead, FL learns a global probability distribution by

updating a global model Gt based on the local models L(k)
t shared by di↵erent

clients where t denotes the time step. The model aggregation allows FL to train
over the entire data without disclosing distributed training samples. Notably,
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FL proceeds by iterating the following steps: (1) the PS that controls the entire
process of FL, initializes the global model G0 and delivers it to all clients, (2)

each client k updates the model using N (k) samples from the local data D(k)
S , and

sends back its model update L(k)
t+1 � Gt to the PS, (3) then, PS aggregates all

local model updates based on methods such as Federated Averaging (FedAvg),
updates the global model, and sends the global model to all clients. Then, the
model aggregation based on FedAvg can be formulated by the following

Gt+1 = Gt +
X

k2K

N (k)

P
k2K N (k)

(L(k)
t+1 �Gt). (3.1)

The goal of the multi-source domain adaptation in FL is to learn a global
model that predicts the target conditional probability distribution P (YT |XT ) of
DT using the knowledge from the K client models learned on di↵erent source

domains {D(1)
S , D(2)

S , ..., D(K)
S }.

3.3.2 Federated Knowledge Alignment

Motivation

E↵ective knowledge transfer in multi-source domain adaptation of Federated
Learning (FL) is critical to the success of distributed machine learning via model
sharing. The challenge is to alleviate the negative transfer of FL such that the
global model’s generality to unseen tasks can be improved.

We demonstrate a global workspace where di↵erent latent representations and
encoder models of clients are organized in a way that they can be leveraged to
perform various tasks improving the global model’s generality (Figure 3.1). This
is inspired by Global Workspace Theory[17, 72] which enables multiple network
models to cooperate and compete in solving problems via a shared feature space
for common knowledge sharing. To this end, we propose Federated Knowledge
Alignment (FedKA) that leverages the representation learning of client local mod-
els and the global model by feature distribution matching in the global workspace,
facilitating e↵ective knowledge transfer between clients.

Global Feature Disentangler

Let f (k)
e : RV

! RU be the encoder of a client model L(k). Let f (k)
c : RU

! RC

be the class classifier of L(k). Then, given an input sample x, the client model

outputs ŷ = f (k)
c f (k)

e (x). Similarly, the global model consists of an encoder fG
e

and a class classifier fG
c .

To learn an encoder f (k)
e that disentangles the domain-invariant features from

X(k)
S , we devise the global features disentangler by introducing a domain clas-

sifier in the PS. Notably, let fd be the domain classifier that takes the fea-
ture representations H as the input and outputs a binary variable (domain
label) q for each input sample h, which indicates whether h comes from the

client k (h 2 H(k) = f (k)
e (X(k)

S ) if q = 0) or from the target domain in the PS
(h 2 HG = fG

e (XT ) if q = 1). The goal of the features disentangler is to learn
a neural network that distinguishes between H(k) and HG for di↵erent clients
k 2 K. The model learning of the features disentangler with respect to client k’s

source domain D(k)
S can be formulated by the following

J (k)

disentangler = J(0, fdf
(k)
e (X(k)

S )) + J(1, fdf
G
e (XT )), (3.2)
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f̂d = arg min
fd

J (k)

disentangler(fd,
ˆ

f (k)
e , f̂G

e ), (3.3)

where J is the negative log likelihood loss for the domain classification to identify
between the representations of the source domain and the target domain.

Moreover, to learn an encoder f (k)
e that extracts domain-invariant features

from client k’s data, f (k)
e is updated by maximizing the above classification loss

J (k)

disentangler of the features disentangler. When the features disentangler cannot

distinguish whether an input representation is from the client domain or the cloud

domain, f (k)
e outputs feature vectors that are close to the ones from the target

domain. Then, each client k sends the feature representations f (k)
e,t (X(k)

S ) to the
PS every round t. In particular, the update of client k’s encoder based on the
features disentangler’s classification loss can be formulated by

ˆ
f (k)
e = arg max

f
(k)
e

J (k)

disentangler(f̂d, f
(k)
e , f̂G

e ). (3.4)

Embedding Matching

The global disentangler encourages a local model to learn features that are
domain-invariant. We further enhance the disentanglement of features by measur-
ing the high-dimensional distribution di↵erence between feature representations
from a client and the target domain in the parameter server (PS). In particular, we
employ the Multiple Kernel variant of Maximum Mean Discrepancy (MK-MMD)

to perform embedding matching between the two distributions H(k)
S = f (k)

e (X(k)
S )

and HT = fG
e (XT ), using di↵erent Gaussian kernel er, r 2 {1, 2, ..., R} where R

is the number of kernels. Then, for each kernel er:

MMD2
er(H

(k)
S , HT ) =

�����
1

N (k)

N(k)X

i=1

�(hi)�
1

NT

NTX

j=1

�(hj)

�����

2

Her

(3.5)

=
1

N (k)

N(k)X

i=1

er(hi, h
0

i) +
1

NT

NTX

j=1

er(hj , h
0

j)� 2
1

N (k)

1

NT

N(k)X

i=1

NTX

j=1

er(hi, hj),

where H is the reproducing kernel Hilbert space (RKHS) and � is a feature map
H ! H.

Furthermore, we consider as the embedding matching loss the distance be-

tween the mean embeddings of �er(H
(k)
S ) and �er(HT ) with five di↵erent Gaus-

sian kernels (a bandwidth µ of two). Then, the local model of client k can be
updated based on the embedding matching loss by the following

J (k)

mmd =
1

5

5X

r=1

MMD2
er(f

(k)
e (X(k)

S ), fG
e (XT )), (3.6)

ˆ
f (k)
e = arg min

f
(k)
e

J (k)

mmd(f (k)
e , f̂G

e ). (3.7)
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Local Model Representation Learning

For each round in FL, the PS sends back the computed gradients from the

global feature disentangler
@J

(k)

disentangler
@f

(k)
e

and the MK-MMD loss J (k)

mmd to

client k to update the local encoder f (k)
e . Then, for each client k, the local

model is updated based on three di↵erent losses, i.e., the empirical loss J (k) =

J(Y (k)
S , f (k)

c f (k)
e (X(k)

S )), the features disentangler loss J (k)

disentangler(f̂d, f
(k)
e , f̂G

e ),

and the MK-MMD loss J (k)

mmd(f (k)
e , f̂G

e )). To alleviate the e↵ect of noisy repre-
sentations at early stages of the training, we adopt a coe�cient �p that gradually
changes from 0 to 1 with the learning progress of FL. Let b be the batch number,
B be the number of total batches, r be the round number, and R be the number
of total rounds in FL. �p is defined by �p = 2

1+exp(��·p) � 1, where p = b+r⇥B
R⇥B

and � is set as five. Notably, we devise the local model representation learning
as follows

E(f (k)
c , f (k)

e ) = J (k)
� �p(J

(k)

disentangler(f̂d, f
(k)
e , f̂G

e )� J (k)

mmd(f (k)
e , f̂G

e )), (3.8)

(
ˆ

f (k)
c ,

ˆ
f (k)
e ) = arg min

f
(k)
c ,f

(k)
e

E(f (k)
c , f (k)

e ). (3.9)

Then, each client k 2 K with the source domain D(k)
S performs model learning

every round t by the following L(k)
t+1 = L(k)

t � ⌘ ·rE(f (k)
c , f (k)

e ), where ⌘ denotes
the learning rate.

Global Model Fine-Tuning Based on Federated Voting

We propose a fine-tuning method called federated voting to update the global
model every round without ground truth labels of the target domain samples.
In particular, Federated voting fine-tunes the global model based on the pseudo-
labels generated by the consensus from learned client local models. This strategy
allows the global model to learn representations of the target domain data without
ground truth labels thus improving the e↵ectiveness of the feature distribution
matching.

Let y(k)i = arg maxj fk(xi)j represents the prediction class of client k’s local
model L(k) with the input xi. In FL, at each time step t, all client model updates

{L(1)
t � Gt�1, L

(2)
t � Gt�1, ..., L

(K)
t � Gt�1} are uploaded to the PS. Given an

unlabeled input sample xi from the target domain DT , the federated voting
method aims to attain the optimized classification label y⇤i by the following

y⇤i = arg maxc2{1,2,...,C}

KX

k=1

{y(k)i = c}. (3.10)

Note that this method could result in multiple y⇤i candidates that receive the
same number of votes, especially when the total client number K is low while the
total class number C is high. In such a case, we randomly select one class from
the candidate pool as the label y⇤i of xi.

Furthermore, the fine-tuning of the global model Gt+1 is performed every
round after the model aggregation with NT samples from the target domain data
XT and the generated labels Y ⇤ = {y⇤i }

NT

i=1 using Eq. 3.10. We devise the global

model fine-tuning as follows G⇤

t+1 = Gt+1 � �p⌘ ·rJ(Y ⇤, Gt+1({xi}
NT

i=1)), where
�p is the coe�cient to alleviate noisy voting results at early stages of FL.
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3.3.3 Criteria

We present two di↵erent criteria for measuring the e↵ectiveness of a multi-source
domain adaptation method, i.e., target task accuracy (TTA) and Group E↵ect
(GE).

The performance of the global model Gt at time step t in the target task is
measured by the target task accuracy (TTA) defined in the following

TTAf (Gt) =

P
(x,y)2DT

{arg maxjf(x; Gt)j = y}

|DT |
, (3.11)

where | · | denotes the size of the target domain dataset.
Moreover, we define a novel criterion for measuring negative transfer in FL,

called Group E↵ect (GE). In particular, GE throws light on negative transfer of
FL, due to ine�cient model aggregation in the PS, which has not yet been studied
to our best knowledge. We aim to measure to what extent the di↵erence in clients’
training data causes diverse local model updates that eventually cancel out in
the parameter space leading to negative transfer. Intuitively, FedKA matches
feature distributions of separate client domains with the target domain in the
parameter server, such that we can alleviate the information loss from the model
aggregation in FL. Given K local updates at the time step t, the group e↵ect

exists if TTAf (Gt+1) < 1
K

P
k2{1,2,...,K}

TTAf (Gt + �(k)
t ) where Gt+1 is attained

by Eq. 3.1. To this end, we propose GE based on TTAf in Eq. 3.11 as follows

GEt =
1

K

X

k2{1,2,...,K}

TTAf (Gt + �(k)
t )� TTAf (Gt+1). (3.12)

3.4 Experiments

In this section, we first describe three benchmark datasets and detailed exper-
iment settings. Next, we demonstrate the empirical evaluation results of our
method using the metric of TTAf (Gt) in Eq.3.11, followed by a discussion. Then,
we compare the evaluation results based on di↵erent backbone encoder models.
Furthermore, we show the e↵ectiveness of our method in alleviating the Group
E↵ect in Eq.3.12 of federated learning with both numerical results and the vi-
sualization of t-SNE features. We use PyTorch [73] to implement the models in
this study.

3.4.1 Dataset

We employed three domain adaptation datasets, i.e., Digit-Five and O�ce-
Caltech10 for the image classification tasks and Amazon Review for the text
classification task, respectively.

Digit-Five is a collection of five most popular digit datasets, MNIST (mt) [74]
(55000 samples), MNIST-M (mm) (55000 samples), Synthetic Digits (syn) [66]
(25000 samples), SVHN (sv)(73257 samples), and USPS (up) (7438 samples).
Each digit dataset includes a di↵erent style of 0-9 digit images.

O�ce-Caltech10 [75] contains images of 10 categories in four domains: Cal-
tech (C) (1123 samples), Amazon (A) (958 samples), Webcam (W) (295 samples),
and DSLR (D) (157 samples). The 10 categories in the dataset consist of objects
in o�ce settings, such as keyboards, monitors, and headphones.
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Amazon Review [76] tackles the task of identifying the sentiment of a product
review (positive or negative). This dataset includes reviews from four di↵erent
merchandise categories: Books (B) (2834 samples), DVDs (D) (1199 samples),
Electronics (E) (1883 samples), and Kitchen & housewares (K) (1755 samples).

3.4.2 Model Architecture and Hyperparameters

We consider di↵erent transfer learning tasks in the aforementioned datasets. No-
tably, we adopt each data domain in the applied dataset as a client domain. In
this regard, besides the target domain of the cloud, there are four di↵erent client
domains in Digit-Five and three di↵erent client domains in both O�ce-Caltech10
and Amazon Review, respectively. We conducted experiments using the following
model architectures and hyperparameters.

Image Classification Tasks

Images in Digit-Five and O�ce-Caltech10 are converted to three-channel color
images with a size of 28⇥28. Then, as the backbone model, we adopt a two-layer
convolutional neural network (64 and 50 channels for each layer) with batch
normalization and max pooling as the encoder and two independent two-layer
fully connected neural networks (100 hidden units) with batch normalization as
the class classifier and the domain classifier, respectively. Moreover, to perform
the local model representation learning, we apply as a learning function Adam
with a learning rate of 0.0003 and a batch size of 16 based on the grid search.
Every round of FL, a client performs training for one epoch using 512 random
samples (32 batches) drawn from its source domain. Furthermore, to compute
the features disentangler loss, 512 random samples from the target domain are
applied every round. The learning of the domain classifier neural network is
performed during the client model representation learning based on a gradient
reversal layer.

To attain a more accurate measurement of di↵erences in feature representation
distributions using embedding matching, we apply a lager batch size of 128 with
the same samples in the client model representation learning. In Digit-Five, we
employ two variants of the federated voting strategy, i.e., Voting-S and Voting-L,
using 512 and 2048 random target domain samples, respectively. Moreover, since
O�ce-Caltech10 is a relatively small dataset, we use all available samples in the
target domain for federated voting. The learning hyperparameters of the global
model are the same with the local models.

Text Sentiment Classification Task

To process text data of product reviews, we apply the pretrained Bidirectional
Encoder Representations from Transformers (BERT) [77] to convert the reviews
into 768-dimensional embeddings. We set the longest embedding length to 256,
cutting the excess and padding with zero vectors. Moreover, we apply a two-layer
fully connected neural network (500 hidden units) with batch normalization as the
encoder using the flatten embeddings as the input. The features disentangler and
class classifier share the same architectures as those in the image classification
tasks, but with di↵erent input and output shapes (binary classification). We
apply Adam with a learning rate of 0.0003, a batch size of 16, and 128 random
training samples every round. A lower training sample number is because Amazon
Review has much fewer samples compared to Digit-Five. Similarly, we employ
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Table 3.1: maxGtTTAf (Gt) (%) on the Digit-Five dataset based on di↵erent
methods. The highest reported accuracy under each task is in bold.

Models/Tasks !mt !mm !up !sv !sy Avg

FedAvg 93.5±0.15 62.5±0.72 90.2±0.37 12.6±0.31 40.9±0.50 59.9

f-DANN 89.7±0.23 70.4±0.69 88.0±0.23 11.9±0.50 43.8±1.04 60.8

f-DAN 93.5±0.26 62.1±0.45 90.2±0.13 12.1±0.56 41.5±0.76 59.9

Voting-S 93.7±0.18 63.4±0.28 92.6±0.25 14.2±0.99 45.3±0.34 61.8

Voting-L 93.5±0.18 64.8±1.01 92.3±0.21 14.3±0.42 45.6±0.57 62.1

Disentangler+Voting-S 91.8±0.20 71.2±0.40 91.0±0.58 14.4±1.09 48.7±1.19 63.4

Disentangler+Voting-L 92.1±0.16 71.8±0.48 90.9±0.36 15.1±0.91 49.1±1.03 63.8

Disentangler+MK-MMD 90.0±0.49 70.4±0.86 87.5±0.25 12.2±0.70 44.3±1.18 60.9

FedKA-S 91.8±0.19 72.5±0.91 90.6±0.14 15.2±0.46 48.9±0.48 63.8

FedKA-L 92.0±0.26 72.6±1.03 91.1±0.24 14.8±0.41 49.2±0.78 63.9

128 random target domain samples every round for federated voting. In addition,
in embedding matching, we apply a batch size of 16.

3.4.3 Ablation Study

To understand di↵erent components’ e↵ectiveness in FedKA, we performed an
ablation study by evaluating maxGtTTAf (Gt) during 200 rounds of FL. We con-
sidered di↵erent combinations of the three building blocks of FedKA and evalu-
ated their e↵ectiveness in di↵erent datasets. As a comparison model, the FedAvg
method applies the averaged local updates to update the global model. More-
over, the f-DANN method extends Domain Adversarial Neural Network (DANN)
to the specific task of federated learning, where each client has an individual
DANN model for training. Similarly, for the f-DAN method, we adapted Deep
Adaptation Network (DAN) to the specific task of federated learning. We discuss
the evaluation results of the ablation study in the following.

Table 3.1 demonstrates the evaluation results in Digit-Five. Though f-DANN
improved the model performance in the tasks of mt, sv, sy, up ! mm and
mt, mm, sv, up ! sy, f-DANN resulted in a decreased maxGtTTAf (Gt) in the
other three tasks. Furthermore, for the two variants of federated voting, the
results suggest that federated voting can improve the model performance, espe-
cially, combined with the global feature disentangler and embedding matching.
In the experiment on the Digit-Five dataset, FedKA achieves the best accuracy
improving model performance by 6.7% on average.

Table 3.2 demonstrates the evaluation results in O�ce-Caltech10. The pro-
posed method also outperforms the other comparison models. In addition, the
e↵ectiveness of federated voting appears to smaller compared to the case of Digit-
Five. This is due to the less available target data in O�ce-Caltech10 for fine-
tuning the global model.

Table 3.3 demonstrates the evaluation results in Amazon Review. FedKA im-
proved the global model’s performance in all target tasks outperforming the other
approaches, by leveraging the global feature disentangler, embedding matching,
and federated voting.

3.4.4 E↵ectiveness of Model Architecture Complexity

To further study the e↵ectiveness of Federated Knowledge Alignment (FedKA)
when applying di↵erent encoder models, we employed Resnet18 [11] without pre-
training to perform feature extraction. Based on the same hyperparameter set-
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Table 3.2: maxGtTTAf (Gt) (%) on the O�ce-Caltech10 dataset based on di↵er-
ent methods. The highest reported accuracy under each task is in bold.

Models/Tasks C,D,W!A A,D,W!C C,A,W!D C,D,A!W Avg

FedAvg 52.9 ±0.56 37.5 ±0.50 28.7±1.80 22.4±1.38 35.4

f-DANN 52.8 ±0.40 37.3 ±0.84 28.8±2.07 23.3±0.51 35.5

f-DAN 52.7±0.64 36.8±0.49 28.4±1.43 22.9±0.76 35.2

Voting 53.3 ±0.80 37.3 ±0.58 27.8±2.37 23.3±1.92 35.4

Disentangler+Voting 52.5±0.65 37.3 ±0.84 29.9 ±2.70 23.4 ±1.72 35.8

Disentangler+MK-MMD 52.7±0.41 36.4±0.93 31.1 ±1.91 24.3 ±1.69 36.1

FedKA 52.8 ±0.57 37.2±0.29 29.3 ±1.51 23.7 ±1.15 35.8

Table 3.3: maxGtTTAf (Gt) (%) on the Amazon Review dataset based on di↵er-
ent methods. The highest reported accuracy under each task is in bold.

Models/Tasks D,E,K!B B,E,K!D B,D,K!E B,D,E!K Avg

FedAvg 62.6±0.58 75.1±0.53 78.0±0.39 80.3±0.34 74

f-DANN 62.7±0.35 75.3±0.34 78.7±0.29 80.4±0.21 74.3

f-DAN 62.3±0.55 73.8±0.29 77.8±0.29 80.1±0.38 73.5

Voting 62.1±0.20 74.6±0.58 77.8±0.70 79.6±0.33 73.5

Disentangler+Voting 62.7±0.37 75.1±0.60 78.4±0.29 80.8±0.52 74.3

Disentangler+MK-MMD 62.9±0.32 75.3±0.33 78.5±0.23 80.2±0.12 74.2

FedKA 62.8±0.23 75.8±0.52 78.8±0.65 80.7±0.28 74.5

Table 3.4: maxGtTTAf (Gt) (%) on the Digit-Five dataset using Resnet18 as the
backbone. The highest reported accuracy under each task is in bold.

Models/Tasks !mt !mm !up !sv !sy Avg

FedAvg 97.9±0.07 71.3±0.79 96.9±0.05 11.9±0.62 55.8±1.60 66.8

f-DANN 97.5±0.07 77.1±0.29 96.8±0.38 12.1±1.01 79.5±0.37 72.6

f-DAN 97.9±0.09 71.7±1.22 96.7±0.18 11.3±0.68 55.5±1.00 66.5

Voting 96.5±0.20 72.1±1.24 96.9±0.17 14.0±0.74 61.1±0.28 68.1

Disentangler + Voting 96.5±0.21 76.5±0.53 96.8±0.42 13.7±0.45 79.4±0.61 72.6

Disentangler + MK-MMD 97.5±0.03 76.7±0.69 96.9±0.15 11.0±0.53 80.1±0.49 72.4

FedKA 96.4±0.23 77.3±1.01 96.6±0.38 13.8±0.81 79.5±0.68 72.7

Table 3.5: maxGtTTAf (Gt) (%) on the O�ce-Caltech10 dataset using Resnet18
as the backbone. The highest reported accuracy under each task is in bold.

Models/Tasks C,D,W!A A,D,W!C C,A,W!D C,D,A!W Avg

FedAvg 56.4 ±1.23 40.2 ±0.69 28.7±1.21 22.7±1.85 37.0

f-DANN 58.3 ±1.53 40.0 ±1.50 30.7 ±3.59 22.3±1.29 37.8

f-DAN 56.7±0.71 38.7±0.75 30.2±1.64 23.9 ±1.70 37.4

Voting 56.5 ±1.88 40.2 ±0.58 29.8±1.45 24.1 ±0.69 37.7

Disentangler+Voting 61.4 ±2.51 40.4 ±1.01 31.5 ±3.11 23.9 ±1.89 39.3

Disentangler+MK-MMD 59.5 ±0.41 37.8±0.93 32.2 ±3.21 22.3 ±1.00 38.0

FedKA 59.9 ±1.44 39.7±0.81 30.2 ±1.71 23.4 ±1.45 38.3

ting, we evaluate the model performance in Digit-Five (Table 3.4) and O�ce-
Caltech10 (Table 3.5). As a result, FedKA achieved performance gains of 8.8%
and 3.5% in Digit-Five and O�ce-Caltech10 with the Resnet18 backbone, respec-
tively. Moreover, as shown in Figure 3.2, a more complex model could contribute
to a larger gain in the global model performance improvement.
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Figure 3.2: Model performance comparison between the Source Only (FedAvg)
method and FedKA using di↵erent backbone encoder models. The result shows
that FedKA can better benefit the improvement in global model performance
with a more complex encoder model.

(a) mt,sv,sy,up!mm (b) mt,mm,sv,up!sy

Figure 3.3: Group E↵ect GEt during the 200 rounds of FL. Lower is better. In
Figure (a), though we observed a bounce-back behavior of GE after 20 rounds, the
negative transfer in each round was decreased by FedKA. Moreover, in Figure (b),
FedKA kept reducing GE even after FedAvg started to bounce back, successfully
alleviating the negative transfer of model aggregation by 1 time without voting
and 4 times with voting, respectively. Compared to the usual model aggregation
of FedAvg, FedKA showed great performance in alleviating Group E↵ect by the
global model fine-tuning with federated voting.

3.4.5 E↵ectiveness in Alleviating the Group E↵ect

To understand the e↵ectiveness of FedKA in alleviating the negative transfer in
Federated Learning (FL), we evaluated Group E↵ect GEt in Eq. 3.12 during the
200 rounds of FL with the Digit-Five dataset (Figure 3.3). The GE value repre-
sents the amount of negative transfer occurring in FL during model aggregation,
where a higher GE value reflects more information loss from the aggregation and
a negative value represents a performance gain via the aggregation. In partic-
ular, as shown in the graphs, the learning progress had high GE values at the
early stages, implicating that the model aggregation results in information loss
and degraded model performance. As learning progresses, the GE values keep
decreasing implicating the gradual convergence of client models towards the tar-
get domain distribution. The results show that FedKA can greatly alleviate the
negative transfer in the model aggregation of FL increasing the global model’s
performance in unseen tasks.

To further verify the e↵ectiveness of FedKA in alleviating negative trans-
fer, we employ t-SNE [78] to visualize the extracted feature distributions from
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Figure 3.4: T-SNE visualization of di↵erent client domain feature distributions
in Digit-Five when applying Resnet18 as the encoder backbone.

di↵erent client data domains based on the learned global model (Figure 3.4).
Apparently, the global model based on FedKA learns better representations for
the classification tasks.

3.5 Discussion

Federated Learning (FL) has been adopted in various walks of life to facilitate
machine learning on distributed client data. Nevertheless, the data discrepancy
between clients usually hinders the e↵ectiveness of model transfer in FL. Tradi-
tional domain adaptation methods usually require prior knowledge of di↵erent
domain data and cannot benefit FL under the constraint of data confidentiality.
In this work, we proposed Federated Knowledge Alignment (FedKA) to allow
domain feature matching in the global workspace. FedKA improves the trans-
ferability of learned domain knowledge alleviating negative transfer in FL. The
extensive experiments showed that FedKA could improve the global model’s gen-
erality to unseen image and text classification tasks. In future work, we aim to
employ self-supervised learning methods such as contrastive learning [79, 80, 81]
to further improve the model’s performance. Moreover, we will also consider the
security of the proposed framework encountered with adversarial attacks such as
information stealing [82, 83] in our future study.
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Chapter 4

Learning to Learn with Reusable Neural
Modules

This chapter consolidates my work on reinforcement learning-based learning pol-
icy optimization of neural modules [44].

Federated learning (FL) has been facilitating privacy-preserving deep learning
in many walks of life such as medical image classification, network intrusion detec-
tion, and so forth. Whereas it necessitates a central parameter server for model
aggregation, which brings about delayed model communication and vulnerability
to adversarial attacks. A fully decentralized architecture like Swarm Learning
allows peer-to-peer communication among distributed nodes, without the central
server. One of the most challenging issues in decentralized deep learning is that
data owned by each node are usually non-independent and identically distributed
(non-IID), causing time-consuming convergence of model training. To this end,
we propose a decentralized learning model called Homogeneous Learning (HL) for
tackling non-IID data with a self-attention mechanism. In HL, training performs
on each round’s selected node, and the trained model of a node is sent to the
next selected node at the end of each round. Notably, for the selection, the self-
attention mechanism leverages reinforcement learning to observe a node’s inner
state and its surrounding environment’s state, and find out which node should
be selected to optimize the training. We evaluate our method with various sce-
narios for two di↵erent image classification tasks. The result suggests that HL
can achieve a better performance compared with standalone learning and greatly
reduce both the total training rounds by 50.8% and the communication cost by
74.6% for decentralized learning with non-IID data.

4.1 Module Selection with Reinforcement Learning

Centralized deep learning in high performance computing (HPC) environments
has been facilitating the advancement in various areas such as drug discovery,
disease diagnosis, cybersecurity, and so on. Despite its broad applications in
many walks of life, the associated potential data exposure of training sources
and privacy regulation violation have greatly decreased the practicality of such
centralized learning architecture. In particular, with the promotion of GDPR
[84], data collection for centralized model training has become more and more
di�cult.

Decentralized deep learning (DDL) is a concept to bring together distributed
data sources and computing resources while taking the full advantage of deep
learning models. Nowadays, DDL such as Federated Learning (FL) [15] has
been o↵ering promising solutions to social issues of data privacy, especially in
large-scale multi-agent learning. These massively distributed nodes can facilitate
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diverse use cases, such as industrial IoT [85], environment monitoring with smart
sensors [86], human behavior recognition with surveillance cameras [87], con-
nected autonomous vehicles control [88, 89], network intrusion detection [90, 91],
and so forth.

Though FL has been attracting great attention due to the privacy-preserving
architecture, recent years’ upticks in adversarial attacks cause its hardly guar-
anteed trustworthiness. FL encounters various threats, such as backdoor attacks
[92, 93, 94], information stealing attacks [95], and so on. On the contrast, fully de-
centralized architectures like Swarm Learning (SL) [96] leverages the blockchain,
smart contract, and other state-of-the-art decentralization technologies to o↵er a
more practical solution. Whereas, a great challenge of it has been deteriorated
performance in model training with non-independent identically distributed (non-
IID) data, leading to extremely increased time of model convergence.

Our contributions We propose a self-attention decentralized deep learning
model called Homogeneous Learning (HL). HL leverages a shared communication
policy for adaptive model sharing among nodes. A starter node initiates a training
task and by iteratively sending the trained model and performing training on
each round’s selected node its model is updated for achieving the training goal.
Notably, a node selection decision is made by reinforcement learning agents based
on the current selected node’s inner state and outer state of its surrounding
environment to maximize a reward for moving towards the training goal. Finally,
comprehensive experiments and evaluation results suggest that HL can accelerate
the model training on non-IID data with 50.8% fewer training rounds and reduce
the communication cost by 74.6%.

Paper outline This paper is organized as follows. Section 4.2 reviews the
most recent work about DDL and methodologies for tackling data heterogeneity
problems in model training. Section 4.3 discusses assumptions and definitions
used in this research. Section 4.4 presents the technical underpinnings of Ho-
mogeneous Learning, including the local machine learning (ML) task model, the
reinforcement learning model, and the self-attention mechanism to learn an opti-
mized communication policy. Section 4.5 demonstrates experimental evaluations
for tackling various image classification tasks with three baseline models applied.
Section 4.6 concludes the paper and gives out a future direction of this work.

4.2 Related Work

In a real-life application, usually data owned by di↵erent clients in such a decen-
tralized system are skewed. For this reason, the model training is slow and even
diverges. Methodologies for tackling such data heterogeneity such as FL, have
been studied for a long time. For example, Sener et al.[97] presented the K-Center
clustering algorithm which aims to find a representative subset of data from a
very large collection such that the performance of the model based on the small
subset and that based on the whole collection will be as close as possible. More-
over, Wang et al.[98] demonstrated reinforcement learning-based client selection
in FL, which counterbalances the bias introduced by non-IID data thus speeding
up the global model’s convergence. Sun et al.[90] proposed the Segmented-FL to
tackle heterogeneity in massively distributed network intrusion tra�c data, where
clients with highly skewed training data are dynamically divided into di↵erent
groups for model aggregation respectively at each round. Furthermore, Zhao et
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al.[99] presented a data-sharing strategy in FL by creating a small data subset
globally shared between all the clients. Likewise, Jeong et al.[100] proposed the
federated augmentation where each client augments its local training data using
a generative neural network. Di↵erent from the aforementioned approaches, HL
leverages a self-attention mechanism that optimizes the communication policy in
DDL using reinforcement learning models. It is aimed to reduces computational
and communication cost of decentralized training on skewed data.

4.3 Preliminaries

4.3.1 Classification Task

We specifically consider supervised learning with C categories in the entire
dataset D. Let x 2 RD be a sample and y 2 {1, 2, ..., C} = Y a label. D con-
sists of a collection of N samples as D = {(xi, yi)}Ni=1. Suppose that f denotes
a neural network classifier taking an input xi and outputting a C-dimensional
real-valued vector where the jth element of the output vector represents the
probability that xi is recognized as class j. Given f(x), the prediction is given by
ŷ = argmaxj f(x)j where f(x)j denotes the jth element of f(x). The training of
neural network is attained by minimizing the following loss function with respect
to the model parameter ✓

J(✓, D) =
1

N

NX

i=1

`(yi, f(xi; ✓)). (4.1)

4.3.2 Decentralized Learning

We assume there are K clients. The kth client has its own dataset D(k) :=
{(xi, yi)}N

(k)

i=1 where N (k) is the sample size of dataset D(k). Here, [Ki=1D
(k) = D

and N =
PK

k=1 N (k). We also suppose that each client cannot share data each
other due to some reason, mainly due to data confidentiality. Decentralized deep
learning (DDL) is a framework to obtain a global model that is trained over the
entire data without sharing distributed samples. For instance, federated learning
(FL)[15] consists of the parameter server (PS) and lots of clients. Let Gt be the

global model of the PS and L(k)
t be the local model of the clientk at the round

t. For each training round t, a subset of clients Kselected is selected for model
training with the latest global model parameters Gt based on their own dataset

D(k2Kselected). Then, the trained models L(k2Kselected)
t+1 are sent back to the PS for

aggregation thus improving the joint global model Gt+1.
Moreover, a peer-to-peer DDL system consists of distributed nodes function-

ing as both the server and the client based on decentralization technologies such
as blockchain[96, 101, 102], token-exchange[103], and so on. For example, the
token-exchange validates and issues security tokens to enable nodes to obtain ap-
propriate access credentials for exchanging resources without the central server.
This is di↵erent from FL where the parameter server plays the key role in learning
process control of model sharing.

4.3.3 Data Heterogeneity

The challenges related to heterogeneity of nodes in DDL refer to two categories,
i.e., data heterogeneity and hardware heterogeneity. Notably, data heterogene-
ity results in time-consuming convergence or divergence of model learning. Let
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p(x|y) be the common data distribution of the entire data D. We assume the
common distribution p(x|y) is shared by all nodes. Then, Nodek has pk(y).
We first consider an independent and identically distributed (IID) setting, i.e.,
pi(x, y) = p(x|y)pi(y) s.t. pi(y) = pj(y) for all i 6= j. Under this assumption,
the data distribution of the entire dataset can be represented by a node’s local
data distribution. Unfortunately, in real-life application, samples held by clients
are usually skewed with various data distributions, i.e., pi(x, y) = p(x|y)pi(y) s.t.
pi(y) 6= pj(y) for all i 6= j. Node1 follows p1(x, y) and Node2 follows p2(x, y).
We further define and clarify such data heterogeneity as follows: given samples
{(xi, yi)}N

(k)

i=1 in nodek’s local dataset D(k), when ↵ samples are from a single

main data class c(k) subject to ↵ > N(k)

C and the remaining samples are randomly

drawn from the other C � 1 data classes, the heterogeneity level H(k)of nodek is
formulated as H(k) = �p(yi = c(k)) ⇤ log(p(yi 6= c(k))) subject to yi 2 {yi}N

(k)

i=1 .
Moreover, we assign a main data class c(k) = k%C to nodek.

4.3.4 Communication Overhead

Communication overhead in DDL usually refers to the payload of shared local
model parameters [57, 104] and communication distances between nodes that
share a model with each other. We mainly discuss the later case here. In par-
ticular, let di,j be the communication distance from nodei to nodej. Disi⇥j is
a symmetrical matrix where the bidirectional distances between two nodes are
equal and the distance to a node itself di,j|i=j is zero. In addition, each distance
di,j|i 6=j in the matrix is a random numerical value taken between 0 and �, where
� denotes the upper bound of the relative distance (Equation 4.2).

Disi⇥j =

0

BBB@

d1,1 d1,2 · · · d1,j
d2,1 d2,2 · · · d2,j
...

...
. . .

...
di,1 di,2 · · · di,j

1

CCCA
,

subject to: di,j|i=j = 0, di,j = dj,i, di,j|i 6=j 2 (0, �].

(4.2)

4.4 Methodology

We propose a novel decentralized deep learning architecture called Homogeneous
Learning (HL) (Fig. 4.1). HL leverages reinforcement learning (RL) agents to
learn a shared communication policy of node selection, thus contributing to fast
convergence of model training and reducing communication cost as well. In HL,
each node has two machine learning (ML) models, i.e., a local ML task model
L(k) for the multi-classification task and an RL model LDQNfor the node selection
in peer-to-peer communications.

4.4.1 Specialized Networks with Specialized Processing

We assume the K nodes in HL share the same model architecture for a classifi-
cation task, which we call a local ML task model. Let yi be the layeri’s output
of L(k). yi = fi(Wiyi�1), i = 1, ..., p, y0 = x, where fi is the activation function,
Wi is the weight matrix of layeri, yi�1 represents the output of the previous
layer, and p is the number of layers in L(k). Notably, we employ a three-layer
convolutional neural network (CNN) with an architecture as follows: the first
convolutional layer of the CNN model has a convolution kernel of size 5×5 with
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Figure 4.1: The framework of Homogeneous learning.

a stride of 1 and it takes one input plane and it produces 20 output planes, fol-
lowed by a ReLU activation function; the second convolutional layer takes 20
input planes and produces 50 output planes and it has a convolution kernel of
size 5×5 with a stride of 1, followed by ReLU; the output is flattened followed
by a linear transformation of a fully connected layer, which takes as input the
tensor and outputs a tensor of size C representing the C categories. Moreover,

the categorical cross-entropy is employed to compute a loss J(L(k)
t , D(k)). After

that, we apply as a learning function the Adam to update the model.

4.4.2 Learning Policy Optimization with Markov Models

In addition to the local ML task model, each nodek in HL is also associated with
a reinforcement learning (RL) model LDQN. The goal of the RL model is to learn
a communication policy for the node selection in decentralized learning. There
are three main components of the RL model, the state s, the action a, and the
reward r. Based on the input state s, the RL model outputs an action a for
the next node selection, and at the same time, updates itself by correlating the
attained reward r with the performed action a. As a result, the recursive self-
improvement of the RL model allows a node to constantly explore the relation
between the system’s performance and the selection policy (i.e., the self-attention
mechanism in HL), contributing to faster convergence of model learning.

Every round t, a RL model observes the state st from two di↵erent sources,

i.e., model parameters s(k)t of the selected nodek and parameters of models in the

surrounding environment {s(i)t |i 2 K, i 6= k}. In particular, we employ a deep
Q-network (DQN), which approximates a state-value function in a Q-learning
framework with a neural network. Let yDQN

i be the layeri’s output of LDQN.

yDQN
i = fDQN

i (WDQN
i yDQN

i�1 ), i = 1, ..., q, yDQN
0 = s, where fDQN

i is the activa-

tion function of layeri, WDQN
i is the weight matrix of layeri, yDQN

i�1 represents
the output of the previous layer, and q is the number of layers in LDQN. Notably,
a DQN model consisting of three fully connected layers is applied (Fig. 4.2).
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The two hidden layers consist of 500 and 200 neurons respectively, using as an
activation function the ReLU. The output layer with a linear activation function
consists of K neurons that output the rewards for selecting each nodek respec-
tively, k 2 {1, 2, ..., K}. Furthermore, at each round t, the node with the largest
reward will be selected. ât = arg maxj fDQN(st)j . Consequently, the RL model

selects and sends the trained local model L(k)
t+1 of nodek to the next node at. As

such, the local ML task model of nodeat is then updated to L(k)
t+1.

Figure 4.2: Module selection based on reinforcement learning

To understand the training of the RL model, we first define the input state
st. The state st is a concatenated vector of the flattened model parameters

of all nodes in the systems. st = {s(k)t |k 2 K}. To e�ciently represent the
state and compute the RL model prediction, we adopt the principal component
analysis (PCA) to reduce the dimension of the state st from an extremely large
number (e.g., 33580 dimensions for the model parameters used in an MNIST
classification task with an input size of 28 ⇥ 28) to K, where K is the number
of nodes. K is adopted due to the minimum possible dimension of a PCA-
based output vector is the number of input samples. Then, we define the output
reward rt. Every round t, a trained ML task model is evaluated on a hold-
out validation set Dval, and the reward rt can be computed from the validation
accuracy ValAcct, the communication distance between the current node k and
the next selected node at, and a penalty of minus one for taking each training
step. rt = 32(ValAcct�GoalAcc)

� dat�1,at � 1, where GoalAcc denotes the desired
performance on the validation set and dat�1,at is the communication distance
drawn from the distance matrix Disi⇥j . We employ an exponentially increasing
function 32(·) to distinguish between di↵erent validation results when the ML
task model is close to convergence when only small variance is observed in the
results. In addition, an episode reward R is the accumulative reward of the
current reward and discounted future rewards in the whole training process of
HL. R =

PT
t=1 �t�1rt, where T is the total training rounds of HL in one episode.

With DQN, we often use experience replay during training. A RL model’s
experience at each time step t is stored in a data set called the replay memory.
Let et be the model’s experience at time t. et = (st, at, rt, st+1), where rt is the
reward given the current state-action pair (st, at) and st+1 is the state of the
ML task models after training. We assume a finite size limit M of the replay
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memory, and it will only store the last M experiences. Moreover, to facilitate
constant exploration of a RL model, epsilon is a factor to control the probability
of the next node being selected by the RL model. In particular, for each round,
a random numerical value between 0 and 1 is obtained and compared with the
current epsilon value Epsilonep where ep denotes the current episode. Then if the
randomly picked value is greater than Epsilonep, the next node will be selected by
the RL model. Otherwise, a random action of node selection will be performed.
For either case, an experience sample et = (st, at, rt, st+1) will be stored in the
replay memory. The decentralized learning terminates when either the model
achieves the desired performance on the validation set or exceeds a maximum
number of rounds Tmax, the learning progress of which is called an episode of
HL. For each episode, we apply the epsilon decay ⇢ to gradually increase the
possibility of the RL model’s decision-making. Epsilonep+1 = Epsilonep · e�⇢,
where Epsilonep+1 is the computed epsilon for the next episode and e is the
Euler’s number that is approximately equal to 2.718.

Furthermore, at the end of each episode ep, the RL model is trained on a
small subset b of samples randomly drawn from the replay memory. We adopt
as a learning function the Adam. Then, the optimization of the DQN model is
formulated in (4.3). The updated DQN model is shared with the next selected
node. As such, the RL model performs better and better in predicting the ex-
pected rewards of selecting each node for the next round, which results in the
increase of the episode reward R by selecting the node with the largest expected
reward at each round t.

ˆrt+1 = max
ai

fDQN(si+1; L
DQN
ep )ai ,

r̂t = fDQN(si; L
DQN
ep )ai ,

Q(LDQN
ep ) =

BX

i=1

`(rt + � ˆrt+1, r̂t),

✓⇤ = argmin
✓

Q(✓),

subject to: ✓ = LDQN
ep ,

(4.3)

where ai denotes the predicted next step’s action that maximizes the future
reward, � denotes the discount factor of the future reward, B denotes the number
of samples in the subset b, and Q is the mean squared error loss function.

Finally, the model training of HL is formulated as Algorithm 1. Algorithm 2
demonstrates the application phase of HL after obtaining the optimized commu-
nication policy of node selection.

4.5 Experiments

4.5.1 Datasets and Architecture

We evaluated the proposed method based on two di↵erent image classification
tasks of MNIST and Fashion-MNIST. MNIST [74] is a handwritten digit image
dataset containing 50,000 training samples and 10,000 test samples labeled as 0-9,
and Fashion-MNIST[105] is an image collection of 10 types of clothing containing
50,000 training samples and 10,000 test samples labeled as shoes, t-shirts, dresses,
and so on. The image data in these two datasets are grayscale with a size of
28⇥28. Moreover, we considered both a 10-node scenario and a 100-node scenario
of HL for tackling the two classification tasks respectively. The machine learning
library we used to build the system is Tensorflow. All experiments were conducted
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Algorithm 1 Model Training of Homogeneous Learning

1: initialize LDQN
1

2: for each episode ep = 1, 2, ... do

3: initialize L(a0)
0 . a0 is the starter node

4: for each step t = 1, 2, ... do
5: while ValAcct < GoalAcc and t < Tmax do
6: ValAcct+1, at, L

(at�1)
t+1 = HL(L(at�1)

t , LDQN
ep )

7: Send {L(at�1)
t+1 , LDQN

ep } to at for the next step’s model training
8: end while
9: end for

10: ˆrt+1 = maxai fDQN(si+1; L
DQN
ep+1)ai

11: r̂t = fDQN(si; L
DQN
ep+1)ai

12: LDQN
ep+1 = argmin

LDQN

ep+1

PB
i=1 `(rt + � ˆrt+1, r̂t)

13: Epsilonep+1 = Epsilonep · e
�⇢

14: end for
15:

16: function HL(L(at�1)
t , LDQN

ep )

17: L(at�1)
t+1 = Train(L(at�1)

t , D(at�1))

18: ValAcct+1 = Acc(Dval; L
(at�1)
t+1 )

19: s(at�1)
t = L(at�1)

t+1

20: s(i)t = L(i)
t subject to i 2 K, i 6= at�1

21: st = {s(at�1)
t , s(i)t | i 2 K, i 6= at�1}

22: ât = argmaxj fDQN(st; L
DQN
ep )j

23: rt = 32(ValAcct�GoalAcc)
� dat�1,ât � 1

24: Add {st�1, at�1, rt�1, st} to the replay memory
25:

26: return ValAcct+1, ât, L
(at�1)
t+1

27: end function

Algorithm 2 Application of Homogeneous Learning

1: initialize L(a0)
0

2: obtain LDQN

3: for each step t = 1, 2, ... do
4: while ValAcct < GoalAcc do
5: L(at�1)

t+1 = Train(L(at�1)
t , D(at�1))

6: s(at�1)
t = L(at�1)

t+1

7: s(i)t = L(i)
t subject to i 2 K, i 6= at�1

8: st = {s(at�1)
t , s(i)t | i 2 K, i 6= at�1}

9: ât = argmaxj fDQN(st; LDQN)j
10: Send {L(at�1)

t+1 , LDQN
} to ât for the next step’s model update

11: end while
12: end for
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on a GPU server with 60 AMD Ryzen Threadripper CPUs, two NVidia Titan
RTX GPUs with 24 GB RAM each, and Ubuntu 18.04.5 LTS OS.

To compare the performance, we adopted three di↵erent baseline models,
which are a centralized learning model based on the data collection of all nodes,
a decentralized learning model based on a random communication policy, and a
standalone learning model based on a node’s local data without communication.
For each type of model, we used the same architecture of the ML task model and
the same training hyperparameters. We assigned the training goal of a model
validation accuracy of 0.80 for the MNIST classification task and 0.70 for the
Fashion-MNIST classification task respectively, using the hold-out test set in the
corresponding dataset.

In addition, for the standalone learning, we adopted the early stopping to
monitor the validation loss of the model at each epoch with a patience of five,
which automatically terminated the training process when there appeared no
further decrease in the validation loss of the model for the last five epochs. In both
the centralized learning and the standalone learning, evaluation was performed
at the end of each training epoch. On the other hand, in the two decentralized
learning cases, due to multiple models existing in the system, evaluation was
performed on the trained local model of each step’s selected node with the same
hold-out test set above.

Furthermore, for the decentralized learning, each nodek owned a total of
500 skewed local training data that have a heterogeneity level H = 0.56 (

p(yi = c(k)) = 0.8) subject to yi 2 {yi}N
(k)

i=1 . The discussion on various het-
erogeneity levels is in Section 4.5.3. In HL, to generate the distance matrix, the
relative communication cost represented by the distance between two di↵erent
nodes di,j|i 6=j takes a random numerical value between 0 and 0.1. A random seed
of 0 was adopted for the reproducibility of the distance matrix (See Appendix
4.5.3). For the local ML task model training, we adopted an epoch of one with a
batch size of 32. A further discussion on the selection of these two hyperparame-
ters can be found in Appendix 4.5.3. The Adam was applied as an optimization
function with a learning rate of 0.001.

4.5.2 Coordination E�ciency

Common Communication Policy Learning As aforementioned, each
nodek has a specific main data class c(k). We considered a starter node that
had a main data class of digit ’0’ for MNIST and a main class of T-shirt for
Fashion-MNIST. Then, starting from the starter node, a local ML task model
was trained on the current node’s local data and sent to the next step’s node
decided by either the RL model or a random action every step, depending on the
epsilon of the current episode (we adopted an initial epsilon of one and a decay
rate of 0.02). For each episode, we applied a maximum step of 35 for MNIST
and 100 for Fashion-MNIST. Moreover, the ML task model and the RL model
were updated using the hyperparameters in Table. 4.1. In addition, we applied
a maximum replay memory size of 50,000 and a minimum size of 128, where the
training of the DQN model started only when there were more than 128 samples
in the replay memory and the oldest samples would be removed when samples
were more than the maximum capacity.

For each episode, we computed the step rewards and the episode reward for
the model training to achieve the desired performance. With the advancement of
episodes, the communication policy evolved to improve the episode reward thus
benefiting better decision-making of the next-node selection. Fig. 4.3 illustrates
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Table 4.1: Hyperparameters for Homogeneous Learning

ML Task Model RL Model

Epoch 1 Episode 120
Batch size 32 Future reward 0.9
Learning rate 0.001 discount
Optimization Adam Epsilon decay 0.02
function Epoch 1
Maximum step 35 (MNIST)/ Batch size 16

100 (Fashion-MNIST) Learning rate 0.001

the episode reward and the mean reward over the last 10 episodes of HL in the
10-node and 100-node scenarios for MNIST and Fashion-MNIST respectively.

Figure 4.3: With the increase of training episodes, the mean reward over last 10
episodes is gradually increasing. The DQN model learned a better communication
policy by training on samples from the replay memory, contributing to a faster
convergence of model training.

4.5.3 Computational and Communication Cost

Computational cost refers to the required total rounds for a system to achieve
the desired performance and was evaluated for all methods. Communication cost
refers to the total communication distance of model sharing from the starter
node to the last selected node and was evaluated for the two decentralized learn-
ing methods. Notably, to evaluate the computational and communication cost,
we conducted 10 individual experiments using di↵erent random seeds for each
method and adopted as final results the best cases of node selection over the last
five episodes when the learned communication policy was prone to settling. The
experiments were performed in the 10-node scenario for the MNIST task.

As shown in Fig. 4.5.a, due to limited local training data, the standalone
learning appeared to be extremely slow after the validation accuracy reached 0.70.
It terminated with a final accuracy of around 0.75 with the early-stopping strat-
egy. Moreover, by comparing the decentralized learning methods with and with-
out the self-attention mechanism, the result suggests that our proposed method
of HL can greatly reduce the total training rounds facilitating the model conver-
gence. In addition, though centralized learning shows the fastest convergence, it
su↵ers from problems of data privacy.

As shown in Fig. 4.4.b, the bottom and top of the error bars represent the
25th and 75th percentiles respectively, the line inside the box shows the median
value, and outliers are shown as open circles. As a result, it shows that HL can
greatly reduce the total training rounds by 50.8% and the communication cost
by 74.6% in decentralized learning of the 10-node scenario for the MNIST task.
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Figure 4.4: (a) Total training rounds based on di↵erent methods. (b) Cost com-
parison between the random policy-based decentralized learning and our method
HL. Each error bar illustrates 10 individual experiments’ results.

HL with Various Heterogeneity Levels We further studied the performance
of the proposed method with di↵erent heterogeneity levels H = {0.24, 0.56, 0.90}

( p(yi = c(k)) = {0.6, 0.8, 0.9} subject to yi 2 {yi}N
(k)

i=1 ). We evaluated the
model performance in the 10-node scenario for the MNIST task. For the cases
of H = {0.24, 0.56}, we applied a maximum training step of 35 as defined above.
For the case of H = 0.90, we applied a maximum training step of 80 instead due
to a challenging convergence of the ML task model using the highly skewed local
training data. Fig. 5 illustrates the comparison of computational cost between
HL and the random policy-based decentralized learning.

Communication Distance Matrix

Fig. 4.6 illustrates the generated distance matrix Di⇥j in the 10-node scenario
when applying a � of 0.1 and a random seed of 0.

Model Distribution Representation Optimization

Under the assumption of data heterogeneity, to allow a reinforcement learning
(RL) agent to e�ciently learn a communication policy by observing model states
in the systems, a trade-o↵ between the batch size and the epoch of local foun-
dation model training was discussed. Fig. 4.7 illustrates the trained models’
weights distribution in the 10-node scenario after applying the principal compo-
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Figure 4.5: Total training rounds when applying local training data with various
heterogeneity levels. The dash lines are the results of HL and the solid lines are
the results of the random policy-based decentralized learning. Di↵erent colors
represent di↵erent heterogeneity levels H = {0.24, 0.56, 0.90}. As we can see, HL
becomes more e�cient when training on distributed data with a higher hetero-
geneity level, contributing to a larger ratio of reduced total training rounds.

Figure 4.6: The distance matrix Di⇥j in the 10-node scenario.

nent analysis (PCA), with di↵erent batch sizes and epochs applied to train on
the MNIST dataset. Moreover, it shows the 100-node scenario where each color
represents nodes with the same main data class. As shown in the graphs, various
combinations of these two parameters have di↵erent distribution representation
capabilities. By comparing the distribution density and scale, we found that
when adopting a batch size of 32 and an epoch of one the models distribution
was best represented, which could facilitate the policy learning of an agent.

4.6 Discussion

Decentralized deep learning (DDL) leveraging distributed data sources con-
tributes to a better neural network model while safeguarding data privacy. De-
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Figure 4.7: Model distribution representation optimization.

spite the broad applications of DDL models such as federated learning and swarm-
ing learning, the challenges regarding edge heterogeneity especially the data het-
erogeneity have greatly limited their scalability. In this research, we proposed a
self-attention decentralized deep learning method of Homogeneous Learning (HL)
that recursively updates a shared communication policy by observing the system’s
state and the gained reward for taking an action based on the observation. We
comprehensively evaluated the proposed method in the 10-node and 100-node
scenarios for tackling two di↵erent image classification tasks, applying as criteria
the computational and communication cost. The evaluation results show that
HL can greatly reduce the training cost with highly skewed distributed data. In
future, a decentralized learning model that can leverage various communication
policies in parallel is considered for the further study of HL.
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Chapter 5

Priors, Attractors, and Inductive Biases

This chapter consolidates my work on global workspace and associative memory-
enabled sparse Transformer [32].

Emerging from the monolithic pairwise attention mechanism in conventional
Transformer models, there is a growing interest in leveraging sparse interactions
that align more closely with biological principles. Approaches including the Set
Transformer and the Perceiver employ cross-attention consolidated with a la-
tent space that forms an attention bottleneck with limited capacity. Building
upon recent neuroscience studies of Global Workspace Theory and associative
memory, we propose the Associative Transformer (AiT). AiT induces low-rank
explicit memory that serves as both priors to guide bottleneck attention in the
shared workspace and attractors within associative memory of a Hopfield net-
work. Through joint end-to-end training, these priors naturally develop module
specialization, each contributing a distinct inductive bias to form attention bottle-
necks. A bottleneck can foster competition among inputs for writing information
into the memory. We show that AiT is a sparse representation learner, learn-
ing distinct priors through the bottlenecks that are complexity-invariant to input
quantities and dimensions. AiT demonstrates its superiority over methods such
as the Set Transformer, Vision Transformer, and Coordination in various vision
tasks.

5.1 Sparse Attention in Transformers

The predominant paradigm in conventional deep neural networks has been char-
acterized by a monolithic architecture, wherein each input sample is subjected to
uniform processing within a singular model framework. For instance, Transformer
models use pairwise attention to establish correlations among disparate segments
of input information [7, 9]. Emerging from the pair-wise attention mechanism,
there is a growing interest in leveraging modular and sparse interactions that align
more closely with biological principles. This sparsity attribute has demonstrated
advantages in enhancing model performance and learning e�ciency, making it a
crucial element for intelligent entity learning [106, 107, 108].

Modularization of knowledge can find resonance with the neuroscientific
grounding of the Global Workspace Theory (GWT) [17, 18, 19, 20]. GWT ex-
plains a fundamental cognitive architecture for information processing within the
brain, where diverse specialized modules compete to write information into a
shared workspace through a communication bottleneck. The bottleneck facili-
tates the processing of content-addressable information through attention that is
guided by working memory [21, 22]. The coordination method [30] represents the
initial attempt to assess the e↵ectiveness of GWT in conventional neural network
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models. Unfortunately, this method relies on iterative cross-attention for both
information writing and retrieval within the shared workspace. When examining
information retrieval in the human brain, it is evident that memory typically
encompasses both working memory and long-term memory in the hippocampus.
Specifically, the hippocampus operates on Hebbian learning for retrieving infor-
mation from working memory, akin to the associative memory found in Hopfield
networks [12, 13]. Our research has revealed that replacing such a repetitive
attention-based mechanism with a consolidated, more biologically-plausible as-
sociative memory can lead to improved model performance. Associative mem-
ory has the capability to directly store and retrieve patterns from the shared
workspace without the need for additional parameters by relying on an energy
function, which fundamentally di↵ers from an attention mechanism. Our ob-
jective is to introduce a shared workspace augmented with associative memory
into a Transformer model, thereby facilitating a more comprehensive and e�cient
association of information fragments.

To this end, we propose the Associative Transformer (AiT) based on a novel
global workspace layer augmented by associative memory. The global workspace
layer entails three main components: 1) the squash layer: input data is trans-
formed into a list of patches regardless of which samples they come from, 2)
the bottleneck attention: patches are sparsely selected to learn a set of priors in
low-rank memory based on a bottleneck attention mechanism, and 3) the Hop-
field network: information is broadcast from the shared workspace to update the
current input based on the associative memory of a Hopfield network. More-
over, the bottleneck attention and the low-rank memory contributes to reduced
model complexity. However, cascading multiple of these components may lead
to di�culty in the emergence of specialized priors in explicit memory. As infor-
mation flows through multiple layers, it becomes more challenging to maintain
specialized priors from diluted representations. Consequently, learning special-
ized priors in layers cascaded in depth requires a mechanism that counteracts
this inherent loss of input specificity. To overcome this challenge, we propose
the bottleneck attention balance loss to encourage the diverse selection of inputs
in the shared workspace. Through end-to-end training, we show the emerging
specialization of low-rank priors, contributing to enhanced performance in vision
tasks. This distinguishes our work from previous literature, which relied on latent
memory comprising indistinct priors with the same dimension as the input, such
as Set Transformer [34], Perceiver [28], and Luna [35]. The no-free-lunch theo-
rem [109, 110] states that a set of inductive bias over the space of all functions
is necessary to obtain generalization. We demonstrate that the specialization of
priors serves as critical inductive biases, encouraging competition among input
data and inducing sparsity in the attention mechanism of Transformer models.

Overall, the main contributions of this work are as follows. (1) This work pro-
poses a more biologically plausible learning framework called Associative Trans-
former (AiT) based on the Global Workspace Theory and associative memory.
(2) AiT is a sparse representation learner, leveraging sparse bottleneck attention
enhanced by a novel attention balance loss to acquire naturally emerging spe-
cialized priors. (3) We devise low-rank priors that are adaptively encoded and
decoded for increased memory capacity. AiT can learn a large set of specialized
priors (up to 128) from a diverse pool of patches (up to 32.8k). (4) The learned
priors serve as attractors within the associative memory of a Hopfield network,
enabling information broadcast from the workspace. This is the first work to
incorporate the Hopfield network as an integral element in a sparse attention
mechanism.
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5.2 Related Work

This section provides a summary of relevant research concerning sparse attention
architectures. We investigate and compare these studies based on their related-
ness to the global workspace theory in terms of several key conditions (please see
Appendix 5.7.2 for a complete comparison).

Transformer models do not possess inductive biases that allow the model to
attend to di↵erent segments of the input data [43]. To enhance Transformer mod-
els, studies of sparse attention architectures explored consolidating latent memory
to extract contextual representations from input data [33, 28, 30, 29, 34, 35]. For
instance, Perceiver [28] and Perceiver IO [29] used iterative cross-attention with a
latent array as priors and a latent transformation applied to the priors, to capture
dependencies across input data. Set Transformer [34] and Linear Unified Nested
Attention (Luna) [35] employed iterative cross-attention, but without using a la-
tent transformation. Other attention mechanisms that rely on strong inductive
biases with predefined network modularization are omitted [111]. In our method,
distinct priors naturally emerge through end-to-end training. Moreover, the pre-
vious methods using latent memory necessitated priors with the same dimension
as the input. In contrast, we devise low-rank priors that can be encoded and
decoded adaptively for increased memory capacity.

In the same vein of building sparse attention mechanisms through a shared
workspace, Coordination [30] used iterative cross-attentions via a bottleneck to
encourage more e↵ective module communication. They argued that more flex-
ibility and generalization could emerge through the competition of specialized
modules. However, the priors in the coordination method possess the same di-
mension as the input, and the number of priors is limited to fewer than 10. The
evaluation was also restricted to simple tasks. Unlike the coordination method,
we propose low-rank explicit memory to learn a larger set of specialized priors
(up to 128) from a pool of patches (up to 32.8k). Moreover, the coordination
method relies on iterative cross-attentions to learn such priors, while this work
focuses on a novel learning method of associative memory-augmented attention.

Furthermore, external memory such as tape storage and associative memory
has been successfully employed [36, 37, 38, 39]. Recent studies explored the po-
tential use of Hopfield networks [12] and their modern variants [112, 13] in Trans-
formers. In contrast to these investigations, we incorporate Hopfield networks as
an integral element in constructing the global workspace layer, functioning as
a mechanism for information broadcast in the shared workspace. This goal is
fundamentally di↵erent from prior studies focused on using Hopfield networks
independently of the attention mechanism.

5.3 Inspecting Attention Heads in Vision Transformers

Vision Transformers (ViT) tackle image classification tasks by processing se-
quences of image patches. The pre-processing layer partitions an image into
non-overlapping patches, followed by a learnable linear projection layer. Let
x 2 RH⇥W⇥C be an input, where (H, W ) is the resolution of the image and C is
the number of channels. x is separated into a sequence of patches xp 2 RN⇥(P 2

·C),
where (P, P ) is the resolution of each image patch and N = HW

P 2 is the num-
ber of patches. These patches are mapped to embeddings vp 2 RN⇥E with
the linear projection. ViT leverages self-attention where each head maps a
query and a set of key-value pairs to an output. The patch embeddings
are used to obtain the query, key, and value based on linear transformations
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Figure 5.1: The scheme of the Associative Transformer. (a) In a global workspace
layer, the input RB⇥N⇥E is squashed into vectors R(B⇥N)⇥E . The squashed rep-
resentations are projected to a low-rank latent space of dimension D << E and
then are sparsely selected and stored in the explicit memory via a fixed bottleneck
k << (B ⇥ N). The Hopfield network utilizes the memory to reconstruct the
input, where a learnable linear transformation (LT) scales the memory contents
to match the input dimension E. (b) The Associative Transformer block con-
sists of sequentially connected self attention, feed-forward layers, and the global
workspace layer.
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of the values:

hi(v) = softmax(
WQ

i v(WK
i v)T

p
D

) W V
i v, (5.1)

Multi-head(v) = Concat(h1, . . . , hA) WO, (5.2)

where WO is a linear transformation for outputs, and A is the number of attention
heads.

We assume that the competition within the pair-wise attention of di↵erent
patches would be of importance for the model to learn meaningful representa-
tions. If such competition exists, a trained model will naturally result in sparser
interactions in attention heads. Therefore, we first performed an analysis of the
operating modes of di↵erent attention heads in a pretrained ViT model by mea-
suring the number of patches each head is attending to. We refer to Appendix
5.7.4 for the detailed experimental settings. The inspection revealed the existing
competition among patches and a large redundancy in the pair-wise attention.
Less than 80% interactions were activated in ViT, and several heads from the
middle layers used only 50% or less interactions with higher sparsity compared
to the other layers. Based on the observation, by introducing a bottleneck that
limits each attention head’s focus to foster competition, we obtain inductive bi-
ases for more e�cient patch learning.

5.4 Associative Transformer

This section discusses the essential building blocks of the Associative Transformer
(AiT), where patches compete to write into the shared workspace through bot-
tleneck attention. The workspace enables an e�cient information writing and
reading mechanism by learning a set of priors in explicit memory. These priors
are low-rank and learned progressively from the input through end-to-end train-
ing. The priors guide the bottleneck attention with an emerging specialization
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property. Moreover, we extend the learned priors to attractors within the as-
sociative memory of a Hopfield network, facilitating information retrieval from
memory and e�cient association of information fragments.

5.4.1 Global Workspace Layer

We devise an associative memory-augmented attention layer called the global

workspace layer, which comprises the squash layer, the bottleneck attention
guided by low-rank memory, and the information retrieval within the associa-
tive memory of a Hopfield network (Figure 5.1). The global workspace layer can
be seen as an add-on component on the monolithic Vision Transformer, where the
feed-forward layers process patches before they enter the workspace, facilitating
abstract relation learning, and the self-attention learns the contextual relations
for a specific sample. The global workspace layer learns spatial relations across
various samples and time steps.

Squash Layer In self-attention, patches from the same sample are attended to.
In our work, we improve the diversity in patch-wise correlation learning beyond
one sample using a squash layer. The squash layer obtains patch representations
from the entire training batch to enable competition among patches not only
from the same sample but also from di↵erent samples. This di↵ers from tra-
ditional approaches where the competition resides within specific samples. The
squash layer concatenates patches within one batch V 2 RB⇥N⇥E into vectors
V 2 R(B⇥N)⇥E , which forms a list of patches regardless of the samples they are
from. Though the number of patches changes in practice depending on the batch
size, the communication bottleneck with a fixed capacity k limits the number
of patches the workspace can attend to at any given time. Since the bottleneck
decreases the complexity from O((B⇥N)2) to O((B⇥N)⇥ k), using the squash
layer increases the diversity of input patches without adding to the complexity.
With the greater diversity, a sample’s classification task, for instance, can benefit
from other patches belonging to the same class within the batch input.

Low-Rank Explicit Memory An explicit memory bank with limited slots
aims to learn M priors � = RM⇥D where D is the dimension of the prior. The
priors in the memory bank are used as various keys to compute the bottleneck
attentions that extract di↵erent sets of patches from the squashed input. Further-
more, using low-rank priors reduces memory consumption, as a lower dimension
D << E is obtained through a down-scale linear transformation.

5.4.2 Bottleneck Attention with a Limited Capacity

The objective of the bottleneck attention is to learn a set of priors that guide
attention to various input patches. This is enabled by a cross-attention mecha-
nism constrained by hard attention. We first consider a tailored cross-attention
mechanism to update the memory bank based on the squashed input ⌅t =
V t
2 R(B⇥N)⇥E , then we discuss the case of limiting the capacity via a top-

k hard attention. Notably, in the cross-attention, the query is a function of
the current memory content �t = {�t

i}
M
i=1. The key and value are functions of

the squashed input ⌅t. The attention scores for head i can be computed by

At
i(�

t, ⌅t) = softmax(
�tWQ

i,t(⌅
tWK

i,t)
T

p
D

). This is the case of soft attention with lim-

ited constraints on the bottleneck capacity. Moreover, the hard attention allows
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patches to compete to enter the workspace through a k-size bottleneck, foster-
ing the selection of essential patches. In particular, the top-k patches with the
highest attention scores from At

i are selected to update the memory. To ensure a
stable update across di↵erent time steps, we employ the layer normalization and
the Exponentially Weighted Moving Average (EWMA) method as follows

headt
i = top-k(At

i)⌅
tW V

t , �̂t = LN(Concat(headt
1, . . . , headt

A)WO), (5.3)

�t+1 = ↵ · �t + (1� ↵) · �̂t, �t+1 =
�t+1

qPM
j=1(�

t+1
j )2

, (5.4)

where top-k selects the k highest attention scores, LN is the layer normalization,
and ↵ is a smoothing factor determining the decay rate of older observations.
EWMA ensures the stable memory update with varying batch sizes by accumu-
lating both old �t and new memories �̂t.

During the test time, the explicit memory is frozen, functioning as fixed pri-
ors, and any memory update from the bottleneck attention will not be retained
(Figure 5.8). We only compute �t+1 for the following pattern retrieval step in
Hopfield networks for the current batch. To ensure a fair evaluation on the test
dataset, the same explicit memory from the training time is utilized across all
test batches.

Bottleneck Attention Balance Loss The bottleneck attention and the low-
rank memory contribute to reduced model complexity of the global workspace
layer. Nevertheless, employing multiple components cascaded in depth might lead
to di�culty in the emergence of specialized priors in the explicit memory (Figure
5.9). To overcome this challenge, we propose the bottleneck attention balance loss
to encourage the selection of diverse patches from di↵erent input positions. The
bottleneck attention balance loss `bottleneck comprises two components, i.e., the
accumulative attention scores and the chosen instances for each input position.
Then, we derive the normalized variances of the two metrics across di↵erent
positions as follows

`loadsi,l =
MX

j=1

(At
i,j,l > 0), `importancei,l =

MX

j=1

At
i,j,l,

(5.5)

`bottlenecki =
Var({`importancei,l}

B⇥N
l=1 )

( 1
B⇥N

PB⇥N
l=1 `importancei,l)

2 + ✏
+

Var({`loadsi,l}
B⇥N
l=1 )

( 1
B⇥N

PB⇥N
l=1 `loadsi,l)

2 + ✏
,

(5.6)

where At
i,j,l denotes the attention score of the input position l for the jth memory

slot of head i, `importance represents the accumulative attention scores for all
M memory slots concerning each input position, `loads represents the chosen
instances for each input position in M memory slots, Var(·) denotes the variance,
and ✏ is a small value to avoid division by zero. Finally, the loss scores for all
the heads are summed up as follows: `bottleneck = � ·

PA
i=1 `bottlenecki where � is

a coe�cient.

5.4.3 Information Retrieval Within Associative Memory

After writing information into the shared workspace, the learned priors can serve
as attractors within associative memory. The objective is to reconstruct the
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current input patches towards more globally meaningful representations based
on these attractors.

Attractors Priors learned in the memory bank act as attractors in associative
memory. Attractors have basins of attraction defined by an energy function.
Any input state that enters an attractor’s basin of attraction will converge to that
attractor. The attractors in associative memory usually have the same dimension
as input states; however, the priors �t+1 in the memory bank have a lower rank
compared to the input. Therefore, we employ a learnable linear transformation
fLT(·) to project the priors into a space of the same dimension, E, as the input
before using them as attractors.

Retrieval Using the Energy Function in Hopfield Networks Hopfield
networks have demonstrated their potential as a promising approach to construct-
ing associative memory. In particular, a continuous Hopfield network [112, 13]
operates with continuous input and output values. The upscaled priors fLT(�t+1)
are stored within the continuous Hopfield network and are subsequently retrieved
to reconstruct the input state ⌅t. Depending on an inverse temperature variable
�, the reconstructed input ⌅̂t can be either a metastable state that represents
a mixture of various attractors or a fixed state represented by one of the at-
tractors. A large � makes it less likely for metastable states to appear, while a
small � increases the likelihood. The continuous Hopfield network employs an
energy function to enable the evolution of patches into more globally meaningful
representations with respect to the learned attractors. We update each patch
representation ⇠t 2 ⌅t by decreasing its energy E(⇠t) within associative memory
as follows

E(⇠t) = �lse(�, fLT(�t+1)⇠t) +
1

2
⇠t⇠t

T
+ ��1logM +

1

2
⇣2, (5.7)

⇣ = max
i

|fLT(�t+1
i )|, ⇠̂t = arg min

⇠t
E(⇠t), (5.8)

where lse is the log-sum-exp function and ⇣ denotes the largest norm of attractors.
Equation 5.7 describes an iteration that can be applied several times. Usually, we
apply just a single step for e�cient forward and backward computation during
end-to-end training. t is the batch time step, and the iteration time step is
implicit. Additionally, a skip connection functioning as the information broadcast
from the global workspace is employed to obtain the final output ⌅t+1 = ⌅̂t +⌅t.

5.5 Experiments

In this section, we discuss the settings and extensive empirical results for im-
age classification and relational reasoning tasks. Our study demonstrates that
AiT outperforms the coordination method and other sparse attention-based ap-
proaches in terms of both performance and model complexity.

5.5.1 Setup

Datasets We evaluate model performance on two di↵erent scales of datasets
(1) small (Triangle [30], CIFAR10 [113], and CIFAR100 [113]) and (2) middle
(Oxford-IIIT Pet [114] and Sort-of-CLEVR [115]). We train the model on these
datasets from scratch using the training split and evaluate using the test split. A
detailed description of the datasets can be found in Appendix 5.7.1.
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Slot 1 Slot 2 Slot 3 Slot 4

Slot 1-16

Slot 17-32

(a) A glimpse of the attention maps at Slot 
1 to Slot 4 of four distinct input images.

(b) The attention maps for all 32 slots in the memory bank, 
applied to four distinct input images. Each memory slot 
learned to attend to different regions of pixels in input images.

Figure 5.2: Learned distinct memory slot attentions in AiT. Each slot’s activation
maps highlight a specific area during the selection of relevant image patches.

Model Variants We investigate three di↵erent sizes of model configurations,
i.e., Small, Medium, and Base. The Base variant setting is adapted from Vision
Transformer (ViT) using 12 layers, 12 attention heads for each layer, a hidden
dimension of 768, and an MLP dimension of 3072. The Medium variant with 6
layers and the Small variant with 2 layers are added for e�ciency comparisons
among approaches. The CLS token is removed while the pooled representations
of the last dense network layer are used instead since using the CLS token leads
to undermined learning results in vision tasks [116, 117].

Hyperparameters The hyperparameters were chosen based on a grid search.
A batch size of 512 was employed for the CIFAR datasets and the Triangle
dataset, 128 for the Pet dataset, and 64 for the Sort-of-CLEVR dataset. We
utilized the AdamW optimizer with �1 = 0.9, �2 = 0.999, and a weight decay
of 0.01. A cosine learning rate scheduler was implemented with an initial learn-
ing rate of 1e-5, a warm-up phase of 5 (15) epochs within a total of 100 (300)
epochs, and a minimum learning rate set to 1e-6. The smoothing factor of the
exponentially weighted moving average, the coe�cient �, and the small value ✏
in the bottleneck balance loss were set to 0.9, 1e-2, and 1e-10, respectively. For
AiT, we employed a memory slot size of 32 and a bottleneck attention head size
of 8. We used a bottleneck size of 512 for CIFAR and Pet, 64 for Triangle, and
256 for Relational Reasoning. We used 32 memory slots for CIFAR, Triangle,
and Relational Reasoning, and 128 slots for Pet (Appendix 5.7.3). Unless other-
wise noted, we trained the model for 100 epochs and reported the mean of three
individual experiments. The code will be made publicly available.

5.5.2 Classification Tasks

The experiments on image classification tasks include comparisons to a wide range
of methods (Table 5.1). We used the author-recommended hyperparameters to
re-implement these methods. Regarding the coordination method, we have exam-
ined the e�cacy of its variants with di↵erent model configurations. The default
coordination model consists of 4 layers, with parameter sharing among di↵er-
ent attention layers. Coordination-D is a deeper model with 8 layers using the
parameter sharing. Coordination-H is a high-capacity model with 4 layers that
employ individual parameters. Coordination-DH is a high-capacity model with
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Figure 5.3: Comparison on the Pet dataset, which shows enhanced accuracy for
AiT.

8 layers. The results show that AiT achieved better performance compared to
the coordination methods. The AiT performance also increased when scaling it
from AiT-Small to AiT-Base, while the coordination methods appeared di�cult
to scale with the increasing number of layers and parameters, as seen in the case
of Coordination-DH. Moreover, AiT outperformed the other baseline methods,
demonstrating strong performance. For instance, compared to ViT-Base with
85.7M parameters, AiT-Medium is a shallower model with only 45.9M param-
eters. Nevertheless, AiT-Medium exhibited an average performance of 81.58%,
surpassing the ViT-Base model’s average of 80.46% and requiring much fewer
parameters. AiT also outperformed sparse attention-based methods such as Per-
ceiver and Set Transformer.

We extended the evaluation to a middle-sized dataset of Oxford Pet. We used
a patch size of 16. A larger memory of 128 slots was employed due to the higher
resolution and the increased data class complexity. For the Oxford Pet dataset,
we trained the model for 300 epochs. Figure 5.3 reveals that ViT performance can
be enhanced by including the global workspace layer. AiT-Medium with fewer
parameters also outperforms ViT-Base in the Pet dataset. Though AiT-Medium
converges at a later training stage, it is a smaller model with fewer layers to
compute compared to ViT-Base.

Prior Specialization Patches in one image can be attended sparsely by dif-
ferent priors. As shown in Section 5.3, a monolithic Transformer model needs
to learn such specialization and relations without the inductive bias introduced
by the global workspace layer. Notably, these priors learned to focus on inde-
pendent spatial areas of an image to guide the attention. We visualized the
activation maps for the specialized priors used in CIFAR-10 for AiT-Small (Fig-
ure 5.2). Each slot’s activation maps highlight specific areas during the selection
of relevant patches.

5.5.3 Ablation Study

We conducted a comprehensive ablation study to gain insights into the functional-
ities of the various components of AiT (Table 5.2). In AiT with reset memory, we
initialized the explicit memory every epoch. The W/O Hopfield ablation replaces
the Hopfield network with another multi-head attention (MHA) that shares the
same architecture as the self attention in Figure 5.1.b. The rationale behind this
ablation is grounded in the prior studies of Set Transformer and Perceiver models
that relied on two MHA components cascaded in depth. For a fair comparison,
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Table 5.1: Performance comparison in image classification tasks

Methods CIFAR10 CIFAR100 Triangle Average Model Size

AiT-Base 85.44 60.78 99.59 81.94 91.0

AiT-Medium 84.59 60.58 99.57 81.58 45.9

AiT-Small 83.34 56.30 99.47 79.70 15.8

Coordination [30] 75.31 43.90 91.66 70.29 2.2

Coordination-DH 72.49 51.70 81.78 68.66 16.6

Coordination-D 74.50 40.69 86.28 67.16 2.2

Coordination-H 78.51 48.59 72.53 66.54 8.4

ViT-Base [9] 83.82 57.92 99.63 80.46 85.7

ViT-Small 79.53 53.19 99.47 77.40 14.9

Perceiver [28] 82.52 52.64 96.78 77.31 44.9

Set Transformer [34] 73.42 40.19 60.31 57.97 2.2

BRIMs [8] 60.10 31.75 - 45.93 4.4

Luna [35] 47.86 23.38 - 35.62 77.6

Table 5.2: Comparison based on an ablation study. The results indicate that
combining all the components leads to the highest performance in all the tasks.

Models CIFAR10 CIFAR100 Triangle Average

AiT 83.34 56.30 99.47 79.70

Reset memory 81.94 55.96 99.46 79.12

W/O Hopfield 81.03 54.96 99.44 78.48

W/O memory (ViT) 79.53 53.19 99.47 77.40

Dense networks 77.78 53.14 99.46 76.79

W/O bottleneck 75.40 46.53 93.33 73.75

W/O SA 72.72 47.75 99.46 73.31

W/O FF 69.51 40.89 97.61 69.34

instead of simply removing the Hopfield network, we replaced it with the MHA.
The added MHA takes the input state ⌅t as the query, and the upscaled priors
fLT(�t+1) as the key and value, i.e., ⌅̂t = MHA(⌅t, fLT(�t+1)).

Moreover, W/O memory evaluates performance when the global workspace
layer is removed, the remaining components of which are equivalent to a simple
Vision Transformer. W/O bottleneck shows performance using dense attention
by removing the top-k bottleneck capacity constraint. W/O SA examines perfor-
mance when the multi-head self attention component in Figure 5.1.b is excluded,
and W/O FF evaluates performance when the feedforward component is removed.
Lastly, the dense networks consist of repeated feedforward components with the
other components removed in each AiT block. The analysis suggests that the
complete model with all components can achieve the highest classification ac-
curacy. The bottleneck appeared to play a significant role in improving perfor-
mance, since its absence led to an evident decrease in accuracy. Making changes
to other components such as Hopfield networks and the explicit memory, while
not as impactful, still resulted in degraded accuracy. Despite the relatively good
performance of dense networks, their performance in relational reasoning tasks is
considerably inferior to that of the AiT model (Section 5.5.8). We demonstrate
the without memory forward ablation in Table 5.7 and Table 5.8. The results
show that AiT performs as well as or better than the without memory forward
ablation.
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Table 5.3: Di↵erent memory initialization approaches. The Gaussian distribution
method was found to give the best results.

Memory initialization methods Accuracy

Gaussian distribution 83.34

Positional embedding [7] 78.51

Uniform distribution [36] 81.92

Identity distribution [30] 78.56

Figure 5.4: Model size vs. accuracy for configurations.

5.5.4 Comparison with the Coordination Method

We performed a detailed comparison with the coordination method in terms
of test accuracy and model size. Figure 5.4 depicts the results for CIFAR-10
based on models with a single layer. Notably, using the low-rank memory (LM)
that has a more diverse set of priors showed benefits in both improving the per-
formance and decreasing the model size. For instance, the baseline coordination
(C) method exhibited moderate accuracy of 60.41% with a model size of 2.2M. In
contrast, consolidating the low-rank memory and the self-attention (C+LM+SA)
exhibited the highest accuracy of 71.62%, while maintaining a relatively compact
size of 1.2M. The Hopfield network (HN) maintained the model performance
while reducing the model size by replacing the cross-attention with more e�cient
information retrieval. However, HN was e↵ective only when either the LM or
SA component was applied. We assume that retrieval with the Hopfield associa-
tive memory relies on a diverse set of priors, which is enabled by the enhanced
bottleneck attention using the low-rank memory and the attention balance loss,
and the learning through self-attention. By contrast, the previous coordination
method had a limited number of priors, e.g. 8, and did not employ self-attention
to correlate among input patches. Moreover, integrating all three components
(C+LM+HN+SA) resulted in a competitive accuracy of 71.49% with a compact
model size of 1.0M.
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(a) Retrieved patterns from the Hopfield network for the first 128 patch positions in the input.
Beta = 1.0 Beta = 4.0Beta = 0.05

(b) Test accuracy when applying varying beta scores.
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Figure 5.5: Comparison with varying inverse temperature scores. The inverse
temperature beta influences the formation of metastable states that concurrently
represent multiple patch representations. A smaller beta is more likely to generate
such metastable states, while a larger beta leads to a stronger separation of
di↵erent patterns. However, a larger beta can also lead to local minima, where
input patterns are reconstructed to the same pattern within associative memory.

5.5.5 Memory Initialization

To initialize the explicit memory, we set each slot with values drawn from a spe-
cific distribution. We investigated several memory initialization methods (Table
5.3). The Gaussian distribution generates random values with a mean of 0 and
a variance of 1. The sinusoidal positional embedding [7] uses sine and cosine
functions to represent positions in a sequence. The uniform distribution [36] uses
an upper bound 1

p
M+D

, where M is the memory slot number and D is the slot

size. The identity distribution [30] uses ones on the diagonal and zeros elsewhere.
We found that the Gaussian distribution resulted in the best performance, pos-
sibly by preventing specific priors from dominating the learning process in early
training stages.

5.5.6 E�cacy of Bottleneck Attention Balance Loss

The Bottleneck Attention Balance Loss facilitates selection of diverse input
patches for each prior. To quantitatively measure the e�cacy, we computed
sparsity scores that represent the ratio of distinct patches in all selected patches.
In Figure 5.10, we observe an apparent increase in the patch diversity.

5.5.7 Varying the Inverse Temperature in Hopfield Networks

We investigated the e↵ect of the inverse temperature on information retrieval
based on the Hopfield networks in Figure 5.5, which shows the reconstructed
patches in the CIFAR-10 task for the AiT-Small model. We found that using
an inverse temperature of 1.0 gave the best retrieval performance based on the
Hopfield networks. The results suggest that the beta parameter requires tuning
to reach optimal performance. We aim to study a mechanism to adjust the
beta adaptively in the future, addressing this sensitivity and potentially further
improving performance.

5.5.8 Relational Reasoning

In relational reasoning tasks, we aim to train a model to answer questions concern-
ing the properties and relations of various objects based on a given image. A per-
formant model can attend to specific regions of images for the question-answering
task. We employed the Sort-of-CLEVR dataset [115] and compared performance
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Table 5.4: Performance comparison in relational reasoning tasks.

Methods Relational Non-relational Average

Transformer based models

AiT-Small 76.82 99.85 88.34

Coordination [30] 73.43 96.31 84.87

Set Transformer [34] 47.63 57.65 52.64

Non-Transformer based models

CNN+RN [115] 81.07 98.82 89.95

CNN+MLP [115] 60.08 99.47 79.78

Dense-Base 46.93 57.71 52.32

Dense-Small 47.28 57.68 52.49

to both Transformer based models including Set Transformer and the coordina-
tion method, and other non-Transformer based models including CNN+MLP and
CNN+Relation Networks (CNN+RN) [115]. The non-Transformer based mod-
els incorporated inductive biases into their architectures, such as convolutional
layers focusing on di↵erent image areas. This often results in superior perfor-
mance compared to the Transformer based methods that lack a built-in induc-
tive bias. Moreover, two dense networks, the Dense-Small and Dense-Base, are
included as additional non-Transformer based models. The Dense-Small (11.1M)
and Dense-Base (62.7M) are derived from the AiT-Small and AiT-Base, respec-
tively. Additionally, in relational reasoning tasks, a question was embedded with
an embedding layer that consists of a learnable linear projection and layer nor-
malization before and after the linear projection. The question embedding was
then concatenated to image patch embeddings as the input of a model and the
labels were a list of answer options with 10 classes.

Table 5.4 presents the results for relational and non-relational tasks, respec-
tively. In the non-relational task, the question pertains to the attributes of a
specific object, whereas in the relational task, the question focuses on the re-
lations between di↵erent objects. A description of the dataset can be found in
Appendix 5.7.1. The results demonstrate a substantial improvement in the per-
formance of AiT when addressing the relational reasoning tasks. This indicates
that the global workspace layer can learn spatial relations across di↵erent samples
and time steps contributing to task performance. Dense networks generally do
not perform well in the more complex relational reasoning tasks.

5.6 Conclusions

We proposed the Associative Transformer (AiT), an architecture inspired by
Global Workspace Theory and associative memory. AiT leverages a diverse set of
priors with the emerging specialization property to enable enhanced association
among representations via the Hopfield network. The comprehensive experiments
demonstrate AiT’s e�cacy compared to conventional models, including the coor-
dination method. In the future, we aim to investigate multi-modal competition
within the shared workspace, enabling tasks to benefit from the cross-modal
learning of distinct perceptual inputs.
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Figure 5.6: Examples from the Sort-of-CLEVR dataset [115].

5.7 Appendix

5.7.1 Datasets

In this section, we describe the datasets used in this work. (1) CIFAR-10 [113]
is an image collection of 10 objects, covering 50k training samples and 10k test
samples, labeled as airplane, automobile, and so on. The size of images is 32⇥32⇥
3. (2) CIFAR-100 [113] contains 100 object classes with 500 training images and
100 testing images per class. For both the CIFAR-10 and CIFAR-100 datasets,
we performed random cropping with size 32⇥ 32⇥ 3 and a padding size of 4. (3)
Triangle dataset [30] includes 50k training images and 10k test images with size
64 ⇥ 64, each of which contains 3 randomly placed clusters of points. The task
is to predict whether the three clusters form an equilateral triangle or not. (4)
Oxford-IIIT Pet dataset [114] comprises 37 categories featuring diverse breeds
of cats and dogs, with 200 images allocated for each class. We utilized random
resized cropping with size 256⇥256⇥3 and resized all images to size 224⇥224⇥3.
Additionally, we applied random horizontal flip and normalization to the CIFAR-
10, CIFAR-100, and Oxford-IIIT Pet datasets. (5) Sort-of-CLEVR dataset [115]
is a simplified version of the CLEVR dataset [118]. It includes 10k images with
size 75 ⇥ 75 ⇥ 3 and 20 di↵erent questions (10 relational and 10 non-relational
questions) for each image. In each image, objects with randomly chosen shapes
(square or circle) and randomly chosen colors (red, green, blue, orange, gray,
yellow) are placed (Figure 5.6).

5.7.2 Related Work on the Global Workspace Theory

We discuss and summarize the existing sparse attention methods in relation to
the main properties of Global Workspace Theory (Table 5.5). First, we examine
whether an architecture involves operations of information writing and reading
through a shared workspace. Secondly, we assess whether the latent representa-
tions (priors) in workspace memory are subsequently processed by self-attention.
Thirdly, we inspect whether the latent representations have a lower rank com-
pared to the input representations. Fourthly, we analyze whether information
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Table 5.5: Comparison of attention architectures based on properties of the
Global Workspace Theory

Methods
Operations

Self-Attention Low-Rank Memory Top-Down/Bottom-Up Bottleneck
Writing Reading

Vision Transformer [9] - - - - BU ⇥

BlockBERT [111] - - - - BU X
BRIMs[8] ⇥ ⇥ ⇥ ⇥ TD X
Modern Hopfield [13] ⇥ X ⇥ X BU ⇥

Perceiver [28] X ⇥ X X BU ⇥

Coordination [30] X X ⇥ ⇥ BU X
Perceiver IO [29] X X X X TD ⇥

Set Transformer [34] X X ⇥ ⇥ BU ⇥

Luna [35] X X ⇥ ⇥ BU ⇥

GMAT [33] X X X ⇥ BU X
Associative Transformer (Ours) X X ⇥ X BU X

retrieval from the workspace is driven by a bottom-up or a top-down signal.
Lastly, we investigate whether the model incorporates a bottleneck with a lim-
ited capacity to regulate the information flow passing through the workspace.

5.7.3 Experimental Settings and Hyperparameters

Table 5.6 presents the hyperparameters used for the di↵erent tasks in this study.
Unless otherwise noted, we employed the author-recommended settings and hy-
perparameters for the re-implementation of baseline models. The small variants
of ViT and AiT have 2 attention layers, and the base variants of them have 12
attention layers instead. We used the same dimension of the hidden layer and
the MLP layer for ViT and AiT. By default, we employed 8 attention heads and
32 memory slots for the bottleneck attention. To obtain the bottleneck size, we
considered two main factors of the batch size and the patch size. For the CIFAR
and Pet datasets, we used a bottleneck size of 512, which selected from a pool
of 32.8k/25.1k patches. For the Triangle dataset, we used a bottleneck size of
64 from a pool of 2.0k patches. For the relational reasoning tasks, we used a
bottleneck size of 256, which selected from a pool of 14.4k patches. Based on
the bottleneck size and the patch pool size, we used 128 memory slots for the
Pet dataset and 32 memory slots for the other datasets. Moreover, we trained
the models on the Pet dataset for 300 epochs and on the other datasets for 100
epochs. In relational reasoning tasks, we trained all models for 100 epochs with
a batch size of 64.

5.7.4 Analysis of Operating Modes of Attention Heads

To understand the operating modes of attention heads in a vision Transformer
(ViT) model, we measured the interaction sparsity of the pair-wise self-attention.
The goal is to investigate whether sparse attention is required to learn meaning-
ful representations during the model training. If the ViT model inherently learns
such sparse interactions among patches, we can induce an inductive bias to foster
the sparse selection of patches through a communication bottleneck. We trained
a ViT-Base variant model for 100 epochs from scratch for the CIFAR-10 task.
Then, for each attention head, we obtained a violin plot to represent the distri-
bution of attention sparsity for di↵erent patches. The attention sparsity for a
specific patch’s interactions with other patches is computed as follows

arg min
s

sX

j=1

Ai,j
� 0.9, (5.9)
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Table 5.6: Hyperparameters for Associative Transformer

Parameter Value
Common parameters
Optimizer AdamW
Weight decay 0.01
Learning rate 1⇥ 10�4

Number of self-attention heads 12
Number of attention layers 2 (Small)/ 12 (Base)
Size of hidden layer 768
Size of MLP 3072
Size of memory slot 32
Number of bottleneck attention
heads

8

Beta 1.0
Epochs 100 (300 for Oxford

Pet)
CIFAR
Patch size 4
Batch size 512
Number of memory slots 32
Bottleneck size 512
Triangle
Patch size 32
Batch size 512
Number of memory slots 32
Bottleneck size 64
Oxford Pet
Patch size 16
Batch size 128
Number of memory slots 128
Bottleneck size 512
Relational reasoning
Patch size 5
Batch size 64
Number of memory slots 32
Bottleneck size 256

where Ai,j is the attention score allocated to the jth patch by the ith patch. The
attention sparsity score is measured by the minimal number of required patches
whose attention scores add up to 0.90. For instance, there are 65 patches for the
CIFAR-10 task with patch size 4, thus there are 65 interactions for each patch to
all the patches including itself. Then, an attention head has a higher sparsity if
the median of the required patches s that satisfies Equation 5.9 across di↵erent
patches is smaller. Moreover, for each head, we showed the distribution of the
attention sparsity scores for di↵erent patches in the violin plots (Figure 5.7),
where the scores from di↵erent input samples were averaged. The number in the
center of each panel gives the median s̄ of the distribution. The heads in each
layer are sorted according to s̄. Note that training the model for a longer duration
can result in even better convergence and higher attention sparsity. We also
refer to a concurrent investigation on the attention sparsity of the Bidirectional
Encoder Representations from Transformers (BERT) model for natural language
processing (NLP) tasks [13]. Our findings about the various operating modes of
attention heads in ViT are in line with the findings in NLP tasks.

50



Figure A.3: Analysis of operating modes of the heads of a pre-trained BERT model. For each head
in each layer, the distribution of the minimal number k of patterns required to sum up the softmax
values to 0.90 is displayed as a violin plot in a panel. k indicates the size of a metastable state. The
bold number in the center of each panel gives the median k̄ of the distribution. The heads in each
layer are sorted according to k̄. Attention heads belong to the class they mainly operate in. Class
(IV) in blue: Small metastable state or fixed point close to a single pattern, which is abundant in
the middle layers (6, 7, and 8). Class (II) in orange: Large metastable state, which is prominent in
middle layers (3, 4, and 5). Class (I) in red: Very large metastable state or global fixed point, which
is predominant in the first layer. These heads can potentially be replaced by averaging operations.
Class (III) in green: Medium metastable state, which is frequently observed in higher layers. We
hypothesize that these heads are used to collect information required to perform the respective task.
These heads should be the main target to improve transformer and BERT models.
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Figure 5.7: Analysis of operating modes of attention heads in the ViT-Base
model. We recognize three di↵erent groups of attention heads based on their
sparsity scores. Group (I) in light blue: High sparsity heads abundant in the
middle layers 3-6. The vast majority of these heads only used 50% or fewer
interactions. Group (II) in orange: Middle sparsity heads predominant in layers
2 and 7-10. Less than 80% of the interactions were activated. Group (III) in
red: Low sparsity heads observed in high layers 11-12 and the first layer, where
the most patches were attended to. The global workspace layer will provide the
inductive bias to attend to the essential patches more e↵ectively.

5.7.5 Discussion on the Test Time Scheme

We demonstrate the schemes for Associative Transformer during test time and
the ’without memory forward’ ablation in Figure 5.8. Moreover, we evaluated the
model performance using the two di↵erent methods for both image classification
and relational reasoning tasks (Table 5.7 and Table 5.8). The results show that
AiT performs as well as or better than the ’without memory forward’ ablation.
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Figure 5.8: The scheme of the Associative Transformer (AiT) during test time.
(1) In AiT, although the explicit memory is frozen (depicted by filled dots), the
memory forward process is enabled. However, the computed output of the multi-
head cross attention will not be used to update the memory, which is di↵erent
from training time. (2) In the ’without memory forward’ ablation, the entire
memory forward process is disabled, leveraging only Hopfield networks for re-
trieval.

Table 5.7: Test time ablation in image classification tasks

Methods CIFAR10 CIFAR100 Triangle Pet

AiT-Medium 84.59 60.58 99.57 30.05

AiT-Medium (without memory forward) 84.50 60.56 99.57 28.68

Table 5.8: Test time ablation in the relational reasoning task

Methods Relational

AiT-Small 76.82

AiT-Small (without memory forward) 75.17

5.7.6 E�cacy of the Bottleneck Attention Balance Loss

The Bottleneck Attention Balance Loss facilitates the learning of priors that can
attend to diverse sets of patches. We demonstrate the e�cacy by visualizing
the bottleneck attention scores computed using the learned priors (Figure 5.9)
and the corresponding selected patches (Figure 5.10). We used as a metric for
sparsity the ratio of distinct patches in all the selected patches by the bottleneck
attention. With the progress of training, we can obtain a more diverse selection
of patches.

5.7.7 Hopfield Networks Energy

In traditional Hopfield networks, it is possible to store N samples and retrieve
them with partially observed or noisy patterns by updating model weights. Dur-
ing retrieval, these partially observed or noisy patterns converge to one of these
attractors, minimizing the Hopfield energy. Unlike traditional Hopfield attractors

52



Sl
ot

 p
os

iti
on Epoch 1

Input patch position

Epoch 20

Epoch 40

Figure 5.9: Bottleneck attention balance loss facilitates the selection of diverse
patches from di↵erent input positions.

Figure 5.10: Examples of the selected patches by the bottleneck attention in
CIFAR-10. As training progresses, we can obtain a more diverse selection of
patches.

that incorporate the implicit memory within its model parameters, AiT decou-
ples the memory from the Hopfield network by introducing the learnable explicit
memory. This memory serves the functions of both priors in the bottleneck at-
tention and attractors in Hopfield networks. Consequently, the Hopfield network
does not need to store di↵erent inner states every batch time, instead, we can
reuse the learned memory bank from the bottleneck attention to update and
maintain a set of attractors with the trainable linear transformation. The pro-
posed architecture is an attractor network in the sense that, in every batch, a
pattern converges to one of these attractors derived from the priors stored in the
explicit memory bank.

Moreover, the information retrieval is based on a continuous Hopfield network,
where an input state converges to a fixed attractor point within the associative
memory of the Hopfield network. Usually, any input state that enters an attrac-
tor’s basin of attraction will converge to that attractor. The convergence results
in a decreased state energy with respect to the stored attractors in the memory.
All patches reach their minimum at the same time point and the global energy in
Equation 5.7 is guaranteed to decrease. To quantitatively measure the amount
of energy reduction during the information retrieval process in the Hopfield net-
work, we computed an input state’s energy before and after it was reconstructed
based on Equation 5.7. A successful retrieval results in substantial reduction in
the state energy (Figure 5.11).
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(a) Global energy over the implicit iteration time step (b) Global energy over the explicit batch time steps
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Figure 5.11: Energy of patch representations in the CIFAR-10 task for AiT-
Small. The Hopfield network operates by iteratively decreasing the energy of an
input state with respect to the attractors stored in its memory. This reduction
in energy enables the retrieval of a representation that closely aligns with learned
attractors, e↵ectively leveraging knowledge within the associative memory. (a)
The global energy is guaranteed to decrease over the implicit iteration time step
for every retrieval. (b) The global energy over the explicit batch time steps gener-
ally decreases, especially during the early stages of training, since the computed
energy is the relative energy to the memory bank that is updated every batch
time step.
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Chapter 6

Model Poisoning in Federated Learning

This chapter consolidates my work on semi-targeted model poisoning in federated
learning [119, 120].

Existing model poisoning attacks on federated learning (FL) assume that an
adversary has access to the full data distribution. In reality, an adversary usually
has limited prior knowledge about clients’ data. A poorly chosen target class
renders an attack less e↵ective. This work considers a semi-targeted situation
where the source class is predetermined but the target class is not. The goal is to
cause the misclassification of the global classifier on data from the source class.
Approaches such as label flipping have been used to inject malicious parameters
into FL. Nevertheless, it has shown that their performances are usually class-
sensitive, varying with di↵erent target classes. Typically, an attack becomes less
e↵ective when shifting to a di↵erent target class. To overcome this challenge,
we propose the Attacking Distance-aware Attack (ADA) that enhances model
poisoning in FL by finding the optimized target class in the feature space. ADA
deduces pair-wise class attacking distances using a Fast LAyer gradient MEthod
(FLAME). Extensive evaluations were performed on five benchmark image classi-
fication tasks and three model architectures using varying attacking frequencies.
Furthermore, ADA’s robustness to conventional defenses of Byzantine-robust ag-
gregation and di↵erential privacy was validated. The results showed that ADA
succeeded in increasing attack performance to 2.8 times in the most challenging
case with an attacking frequency of 0.01 and bypassed existing defenses, where
di↵erential privacy that was the most e↵ective defense still could not reduce the
attack performance to below 50%.

Model poisoning on federated learning (FL) causes client models to be com-
promised by malicious model parameter sharing. Though FL extends the attack-
ing surface of the attacker involving lots of clients, the model aggregation that
combines di↵erent clients’ model parameters, can greatly reduce poisoning at-
tack’s e↵ect. Di↵erent from previous studies that adopt an arbitrary target class
to mount an attack, this work proposes a novel semi-targeted model poisoning
attack that adaptively computes the optimized attacking target depending on in-
put samples. Such an attack could immensely enhance model poisoning’s e�cacy
in FL, improving its robustness against model aggregation. The empirical result
showed that the proposed method achieved great performance even with a low
attacking frequency, generalizing across di↵erent distribution spaces and model
architectures. In addition, existing defenses in FL were found to be ine↵ective in
alleviating the semi-targeted attack.
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Figure 6.1: Model poisoning in FL. The adversary mounts the attack by uploading
poisoned model parameters.

Figure 6.2: ADA, a semi-targeted model poisoning attack, compromises the global
model in the black-box setting, by carefully choosing the target class based on
the backward error analysis.

6.1 Target Optimization in Poisoning Attack

Data privacy is a growing concern, attracting attention from various sectors. The
increasing public awareness of legal restrictions such as the General Data Protec-
tion Regulation (GDPR) [84] has made the traditional centralized processing of
sensitive data increasingly challenging. As a result, decentralized solutions such
as federated learning (FL) [15, 121] have been adopted to improve performance
by sharing and aggregating model parameters without disclosing clients’ training
data.

FL has been widely used in various fields including medical diagnosis, financial
data analysis, and cybersecurity. However, it has been shown to be vulnerable to
adversarial attacks [122, 123, 124, 125, 126]. Notably, a compromised client might
inject malicious model parameters into the FL system, causing malfunction and
influencing other clients in the system (Figure 6.1). Furthermore, these attacks
in FL are typically either untargeted or targeted [14]. The aim of an untargeted
attack is to degrade the performance of a client model in general, while a targeted
attack aims to cause a client model to misclassify samples of a specific class into
the attacker’s desired class.

This study investigates a novel form of model poisoning attack in FL where
the attacker’s goal is to avoid being recognized as a specific class. This type
of attack can occur in various real-world scenarios. For example, an attacker
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sending unauthorized advertising emails may aim to have the emails recognized
as belonging to a benign class other than spam. In a facial recognition system,
an individual on a blacklist may aim to be recognized as someone else not on the
blacklist. It is important to note that these attackers are not motivated to be
recognized as a specific class (as is the goal of targeted attacks), but rather to be
unrecognized as a specific class.

This type of attack is referred to as a semi-targeted attack. In a semi-targeted
attack, the attacker is assigned a specific class (the source class) and aims to
poison the classifier so that samples with the source class are recognized as a
class other than the source class. Unlike targeted attacks, the attacker is free to
choose the target class to maximize attack performance in a semi-targeted attack.
Due to this freedom of attack, the risk of the semi-targeted attack outweighs the
risk of the targeted attack.

The success of the attack can vary depending on the assigned source class,
meaning that the attack is typically class-sensitive in terms of its generality, with
performance varying depending on the class considered [127]. The challenge in
a semi-targeted attack is determining the target class that is optimized for the
assigned source class in order to achieve the best attack performance.

To address this challenge, we propose two approaches, the Attacking Distance-
aware Attack (ADA) and the Fast LAyer gradient MEthod (FLAME), to find
the optimized target class for attacking FL in both full knowledge and partial
knowledge settings, respectively. The goal is to investigate to what extent the
attack performance can be increased in the semi-targeted setting using di↵erent
approaches for choosing the target class.

In summary, our contributions are as follows.

• This work introduces the semi-targeted attack, a new type of model poi-
soning on federated learning.

• We propose a semi-targeted model positioning attack called ADA to com-
promise a client classifier by carefully choosing the target class (Section
6.4.2). A backward error analysis of the global model shows that the up-
date gradient’s scale when choosing a certain target class for producing
a poisoned model, immensely influences the expected attack performance
(Figure 6.2). This study provides a detailed demonstration of how FLAME
enhances a poisoning attack’s performance in FL under the data confiden-
tiality constraint (Section 6.4.3).

• To understand the risk of such attacks, an extensive study is performed by
varying the factor of attacking frequency against the metrics of adversary
task accuracy (ATA) and main task accuracy (MTA). The empirical results
show that ADA is e↵ective in both full knowledge (white-box) and partial
knowledge (black-box) settings. ADA increases the attack performance to
2.8 times when the attacking frequency is as low as 0.01 (Section 6.5.3).

• An analysis of ADA’s robustness to conventional defense strategies in FL
shows that ADA can bypass these defenses retaining competitive attack
performance (Section 6.5.6).

The remainder of this paper is structured as follows. Section 2 reviews the
most recent work on poisoning attacks and their defense in FL. Section 3 presents
essential definitions and assumptions. Section 4 demonstrates the technical un-
derpinnings of the proposed method. Section 5 presents extensive empirical eval-
uations. Section 6 concludes the paper and gives out future directions.
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6.2 Related Work

Poisoning Attack Federated Learning (FL) is susceptible to various types of
adversarial attacks, primarily poisoning attacks [127, 128, 129, 123, 130, 131, 132,
133] and information stealing attacks [134, 135, 136, 82, 83]. The focus of these
attacks is to misclassify client samples by injecting poisoned local models, rather
than reconstructing samples from shared models. Poisoning attacks on FL are
usually mounted via manipulating either training data [127, 128, 129, 123, 137]
or local training process [123, 130, 131, 132] of an edge client. This section briefly
reviews related research e↵orts of poisoning attacks on FL.

In targeted poisoning attacks on FL, the goal of the adversary is to produce
a poisoned local model update. This update is designed in a way that after
model aggregation, specific inputs will induce misclassification of the global model
[138, 139]. In particular, label flipping [122] is one type of poisoning attacks,
where a set of data labels are randomly flipped to a di↵erent class to train a
malicious model. For example, a semantic backdoor flips the labels of images
containing specific natural features to cause misclassification when these features
are present as triggers [123]. Moreover, a malicious model update generated
through label flipping typically results in a larger norm of model weights than a
benign update [14].

To avoid easy detection by norm-based defense algorithms in FL, Bagdasaryan
et al. [127] proposed a train-and-scale technique that scales the norm of a ma-
licious update to the detecting algorithm’s bound. Nevertheless, this strategy
could also result in degraded attack performance due to diminished poisoned
model weights. Additionally, the model replacement attack [127] aims to replace
the global model entirely with a model controlled by the adversary. Notably, a
converged global model often results in small benign local updates, which creates
a vulnerability where an adversary-controlled client could potentially upload a
maliciously crafted update. This malicious update then replaces the global model
after aggregation.

Although the aforementioned targeted attacks aim to compromise the FL
system, their attack performance typically depends on the assigned source class.
There is currently no research on semi-targeted attacks that have a fixed source
class and an adjustable target class. A semi-targeted attack addresses the prob-
lem of a poorly chosen target class degrading the poisoning attack’s performance
after model aggregation in FL and making it easier to detect poisoned model
parameters. To the best of our knowledge, this is the first study to examine
semi-targeted poisoning attacks with a focus on generality in FL. In this regard,
Shafahi et al.[140] presented a feature-collision method to generate similar-looking
instances based on the source class such that their hidden features were close to
the target class in a centralized setting. To mount the attack, the adversary
needed prior knowledge about both the data distributions of the source class and
the target class, which is di↵erent from this study with the federated setting
where neither the data modification nor the prior knowledge about the target
class’s data distribution is required. This work closes this gap and investigates
the behaviors of model poisoning attacks in the partial knowledge setting. Fur-
thermore, this work considered poisoning attacks in FL with a more realistic
setting regarding the attacking frequency, where the adversary had only a small
possibility of participating in the training every round.

Defense Strategies Existing research on defenses for federated learning
against model poisoning attacks can generally be divided into two categories:
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anomaly detection and robust aggregation.
Anomaly detection aims to identify malicious local model updates by com-

paring the similarity of client updates and identifying those that deviate greatly
from others [93, 141, 142, 143, 144]. One of the most commonly used methods
is norm di↵erence clipping [94]. Poisoning attacks often result in larger norms
compared to benign updates from honest clients, and norm di↵erence clipping
discards updates with norms above a certain threshold, thus separating benign
and malicious updates.

Another line of research seeks to improve the resilience of aggregation in
FL against poisoned parameters, by carefully selecting local model updates for
aggregation [145, 146, 147] or adding noise to model parameters to counteract
the e↵ect of a malicious update [123, 148, 92]. For example, Di↵erential Privacy
(DP) limits the influence of a malicious update by adding a small fraction of
Gaussian noise to the parameters of local updates.

In Section 6.5.6, the experimental evaluation demonstrates that the pro-
posed attack method can bypass existing defense methods, including not only the
anomaly detection-based defense of norm di↵erence clipping but also the most
recent robust aggregation-based defenses of Krum[145], Trimmed Mean[146], and
Di↵erential Privacy[149].

6.3 Preliminaries

In this section, the classification task in federated learning (FL) is formulated, and
several conventional poisoning attacks on FL related to this work are discussed.
The notation used in this paper is summarized in Table 6.1.

6.3.1 Classification Tasks in FL

Supervised learning with C categories in a given dataset D is a fundamen-
tal classification task in machine learning. Let x 2 RV be a sample and
y 2 {1, 2, ..., C} = Y a label. D consists of a collection of N samples as
D = {(xi, yi)}Ni=1. Suppose that f denotes a neural network classifier taking
an input xi and outputting a C-dimensional probability vector where the jth
element of the output vector represents the probability that xi is recognized as
class j. Given f(x), the prediction is given by ŷ = arg maxj f(x)j where f(x)j
denotes the jth element of f(x). The training of the neural network is attained
by minimizing the following loss function concerning the model parameter ✓

J(✓, D) =
1

N

NX

i=1

`(yi, f(xi; ✓)), (6.1)

where ` denotes the cross entropy loss function.
Federated Learning (FL) is a privacy-preserving framework that enables the

creation of a global model trained on decentralized data without revealing the
individual training samples. In a FL framework with K clients, the kth client
has its own dataset D(k) := {(xi, yi)}N

(k)

i=1 where N (k) is the sample size of dataset
D(k). Here, [Kk=1D

(k) = D and N =
PK

k=1 N (k). Each client cannot share its
data with others mainly due to data confidentiality, making FL an attractive
approach for collaborative learning.

The FL process involves several steps. Firstly, the parameter server (PS)
initializes a global model G0, which is then sent to all clients. Secondly, each client

updates the model using their local data D(k) and sends the update L(k)
t+1�Gt to
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Table 6.1: Notation for the Attacking Distance-aware Attack

Federated Learning (for supervised learning tasks)

D entire data set

D(k) client k’s local data

N number of entire data

N (k) number of client k’s local data

x 2 RD sample

y 2 Y label

C number of data categories

`(·) cross entropy loss function

K number of total clients

Kselect number of selected clients at each round

Gt global model at round t

L(k)
t client k’s local model at round t

⌘ learning rate

E number of local epochs

b set of batch

Attacking Distance-aware Attack

cS source class

cT target class

Dval validation dataset

Dval(cS) samples in Dval with label cS
Dc

val
(cS) samples in Dval with label other than cS

D(cS) samples in D with label cS
↵ injection rate

Dadv adversary’s backdoor data

Ladv
t adversary’s local model at round t

Q norm threshold to drop malicious updates

⌦ norm scaling factor

{Y \ cS} candidate target classes

c⇤ best target class of the attack

�t feature extractor of the global model Gt

µc mean of feature vectors in class c

c⇤T optimized target class of the attack

✏ attacking frequency factor

Kadv number of total malicious clients in K

� number of tolerable attackers in Krum

� number of the removed items in Trimmed Mean

� standard deviation of Gaussian noise in di↵erential privacy

the PS. Finally, the PS aggregates all local updates, updates the global model,
and sends it back to all clients. It’s worth noting that in FL, the local models of
clients and the global model usually share the same architecture.

In addition, to reduce the waiting time for all clients to complete their local
model training, the PS randomly selects a subset of Kselect clients each round to
update the global model based on their local updates. FedAvg [16] is a widely
used FL algorithm that utilizes averaging of all local updates to update the global
model. The specific details of the FedAvg algorithm are presented in Algorithm
3.
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Algorithm 3 FedAvg

1: initialization of G0 at the server side
2: for each round t = 0, 1, 2, ... do
3: PS randomly selects a subset of Kselect clients from all K clients
4: PS sends the current global model Gt to Kselect

5: for each client k = 1, 2, ..., Kselect do

6: L(k)
t+1 = FedLearnLocal(Gt, L

(k)
t , D(k))

7: end for
8: Gt+1 = Gt +

P
k2Kselect

N(k)
P

k2K
select

N(k) (L
(k)
t+1 �Gt)

9: end for
10:

11: function FedLearnLocal(Gt, L
(k)
t , D(k))

12: L(k)
t  Gt

13: for each epoch e 2 E do
14: for each batch b ⇢ D(k) do
15: L(k)

t+1  L(k)
t � ⌘ ·rJ(L(k)

t , b)
16: end for
17: end for
18: return L(k)

t+1

Poisoning Attacks on Federated Learning Poisoning attacks have been
extensively studied in the context of centralized learning. Notably, in a supervised
classification task with C categories, the goal of an attacker is to either degrade
the performance of the classifier in general (untargeted) or cause it to misclassify a
specific class (targeted). To achieve these goals, the adversary manipulates either
the training data by adding malicious samples (data poisoning) or the model by
injecting malicious parameters (model poisoning) that are carefully crafted to
cause the model to behave unexpectedly during inference.

In targeted poisoning attacks, the class of samples used for the attack is known
as the source class cS , while the final class to which the sample is modified is called
the target class cT . Specifically, the goal of the attacker is to manipulate the
classifier f such that given a sample (x, y), the model makes incorrect predictions
for samples belonging to the source class cS

arg max
k

f(x)k =

(
cT if y = cS ,

y Otherwise .
(6.2)

Let Dval be a validation dataset, Dval(cS) be the set of samples in Dval with
label cS , and Dc

val
(cS) = Dval \ Dval(cS). To measure the performance, the main

task accuracy (MTA) is defined as the validation accuracy of the classifier on
samples that are not from the source class cS . In particular, MTA of classifier
f when it is poisoned with a source label cS is defined as the accuracy on the
validation set Dc

val
(cS):

MTAf (cS) =

P
(x,y)2Dc

val
(cS)

{arg maxkf(x; G)k = y}

|Dc
val

(cS)|
. (6.3)

The target-specified adversary task accuracy (ts-ATA) evaluates the success
rate of an attack. It is computed as the percentage of samples from the source
class that are misclassified as the desired target class by the poisoned model.
Specifically, ts-ATA of classifier f poisoned with source label cS is determined by
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the validation accuracy for Dval(cS):

ts-ATA(cS , cT ) =

P
x2Dval(cS)

{arg maxkf(x; G)k = cT }

|Dval(cS)|
. (6.4)

We introduce two building blocks, label flipping [122] and gradient scale ad-
justment by Train-and-scale technique [127], needed to introduce the proposed
method.

6.3.2 Label Flipping Attack

In a label flipping poisoning attack, the attacker relabels the samples from the
source class with the target class label. For any sample (x, y) 2 D(cS), the
label is replaced with cT to obtain the modified sample (x, cT ). By training the
classifier with these poisoned samples, the poisoning attack as defined in Eq. 6.2
can be achieved. Typically, attackers employ a combination of poisoned samples
and legitimate samples to train the classifier. In our experiments, label flipping
is applied to all samples in D(cS), and a subset of samples from classes other
than the source class are randomly selected to achieve a desired injection rate ↵,
where ↵ represents the percentage of poisoned samples in the adversarial training
dataset Dadv. This approach aims to mount a poisoning attack without sacrificing
too much on the accuracy of the non-target classes.

In the FL setting, if a compromised client is selected by the PS for local
model training, it will download the latest global model and replace its local
model, then train a local model Ladv with the poisoned samples, and corrupt the
global model by repeatedly submitting malicious updates to the PS. In addition,
multiple compromised clients could exist to mount poisoning attacks against the
global model.

6.3.3 Gradient Scale Adjustment

The ”Train and Scale” approach is a common strategy employed by attackers
in federated learning (FL), to bypass detection methods based on comparing
the norm of model updates. Such a detection method compares the norm of
the updates with a certain threshold Q that reflects the di↵erence of updates.
Updates whose norm exceeds this threshold are dropped, a technique known

as norm di↵erence clipping (NDC) [150], i.e., kL(k)
t � Gtk > Q where k · k is

a prescribed norm. However, attackers can easily bypass this defense strategy
by using the ”Train and Scale” approach, which adjusts the magnitude of the
updates to evade detection. By scaling down the weights, the norm of the update
can be reduced to below the detection threshold Q, allowing the malicious update
to pass through undetected. The scaling factor is carefully chosen to maintain
the e↵ectiveness of the malicious update while reducing its norm.

To achieve this goal, the attacker modifies the scale of the model update
kLadv

t+1 �Gtk so that it is upper bounded by Q. Let a scaling factor ⌦ defined by

⌦ =
Q

kLadv
t+1 �Gtk

. (6.5)

Then, the malicious client submits ⌦kLadv
t+1 � Gtk as model update instead of

kLadv
t+1 �Gtk.
One limitation of this approach is that Q is usually unknown to the adver-

sary. Nevertheless, the adversary can approximately estimate the bound Q using

62



the following strategy [127]. It is expected that the threshold Q set by the PS
is designed such that legitimate updates are not rejected with high probabil-
ity. Therefore, the adversary can initially employ several compromised clients
to perform legitimate training with the latest global model shared by the PS.
The average norm of the collected legitimate updates can be employed as a lower
bound of Q.

6.4 Methodology

In this section, a new type of semi-targeted model poisoning on federated learning
called the Attacking Distance-aware Attack (ADA) is introduced. Then, the Fast
LAyer gradient MEthod (FLAME) is demonstrated to mount the semi-targeted
attack in a partial knowledge setting.

Motivation In multi-class classification tasks, an adversary aims to compro-
mise the system such that instances from a specific class cS will be misclassified.
Compared to a targeted attack with a fixed target class cT for the given source
class cS , a semi-targeted attack that does not have a specified target class could
provide more flexibility, increasing the risk to the FL system. For example, in a
real world scenario, a self-driving car that recognizes a stop sign could be com-
promised such that the prediction of the stop sign will be wrong. The incorrectly
predicted class can be the speed limit sign, the billboard, and so on. Similarly, a
spam filter that aims to identify the category of an email can be poisoned such
that a certain type of spam will bypass the filter, with the target class being
sports, politics, and so forth.

The ADA is a semi-targeted attack that aims to manipulate the global model
towards a specific behavior, while a Byzantine attack [151] is an untargeted attack
that aims to invalidate the global model without a specific target. The advantage
of ADA over a Byzantine attack is that it allows for more subtle attacks that are
less likely to be detected by traditional defense mechanisms. ADA is able to
bypass robust aggregation defenses and achieve high attack performance with
limited prior knowledge of the source class. The benefits of requiring only a
single class’s data become more apparent in an extremely large label space such
as ImageNet (1000 classes), as demonstrated in later sections.

In a semi-targeted attack, the e↵ectiveness of the attack can vary depending
on the target class cT considered. The attack’s robustness to di↵erent target
classes is not guaranteed, and using a less e↵ective target class can result in
longer convergence time required to achieve the same level of attack performance.
Longer convergence time allows a defense method in the PS to more easily discover
the attack. Additionally, since only a small subset of clients are selected in each
round, a less e↵ective malicious update might be overwritten by the outnumbering
legitimate updates submitted by benign clients.

Intuitively, if the adversary can choose the most e↵ective target class, a poi-
soning attack will be greatly enhanced. To reveal the risk of the semi-targeted
attack, we propose the Attacking Distance-aware Attack (ADA), an enhanced
model poisoning attack on FL. Notably, ADA measures the distances in the la-
tent feature space between di↵erent classes of a classifier and finds the optimized
target class cT given a source class cS to mount the attack. Two di↵erent set-
tings of ADA were studied, based on the prior knowledge of the adversary about a
client’s data distribution in FL, i.e., attacking with full knowledge and attacking
with partial knowledge.
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6.4.1 Semi-Targeted Attack

The semi-targeted attack in FL refers to a model poisoning attack with a fixed
source class cS and various possible target classes {Y \ cS}. The goal of the
semi-targeted poisoning attacks is to corrupt f so that

arg max
k

f(x)k =

(
c⇤ if y = cS ,

y o.w. .
(6.6)

where
c⇤ = argmaxcts-ATA(cS , c). (6.7)

In particular, for any given cS , ts-ATA(cS , cT ) depends on the choose of cT .
In the semi-targeted attack, the attacker could choose any arbitrary cT thus
the attack performance could be increased. In this regard, the max target-non-
specified adversary task accuracy (max-ATA) of classifier f poisoned with source
label cS is defined as the validation accuracy for D(cS):

max-ATA(cS) = max
c2C

ts-ATA(cS , c). (6.8)

Note that,

max-ATA(cS) � ts-ATA(cS , cT )

holds for any cS and cT , which means that the semi-targeted poisoning attack is
always more powerful than targeted poisoning due to the more relaxed constraint.

In addition, it is assumed that the adversary specifies only one source class cS
for simplicity, but the semi-targeted attack can be extended to scenarios where
there are multiple source classes. In such cases, the optimized target classes
would be computed separately for each source class specified by the adversary.

6.4.2 Attacking with Full Knowledge

In the full knowledge setting, the adversary has complete knowledge of the client
data distribution and is able to access samples drawn from the underlying training
sample distribution in an independent and identically distributed (IID) manner.

To choose the class that is supposed to give larger ts-ATA, the adversary
leverages the attacking distance (AD) defined as follows. Let �t be the feature
extractor of the shared global model Gt. Then the adversary extracts feature
vectors �t(x) of local training samples x 2 Dadv.

Let µc be the mean of feature vectors in class c where

µc =
1

|Dadv(c)|

X

x2Dadv(c)

�t(x). (6.9)

Then, the attacking distance between two di↵erent classes c and c0 is defined by

AD(c, c0) = kµc � µc0k2, (6.10)

where k · k2 denotes the `2 norm.
The distribution visualization of the extracted feature vectors � using the

principal component analysis (PCA) for measuring the AD is shown in Figure
6.3.

The attack strategy in this setting is to find a target class cT in the latent
feature space that is close to the source class cS . This reduces the scale of the
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Figure 6.3: Distribution visualization of the extracted feature vectors �(x) using
the PCA.

required malicious update in the adversary’s local model, increasing the chances
of the attack surviving the aggregation with other, outnumbering legitimate up-
dates. The target class is chosen based on the Attacking Distance (AD) metric
(Eq. 6.10) using the following steps:

c⇤T = argminc2C\cSAD(cS , cT ). (6.11)

Furthermore, the adversary performs malicious model training based on
the optimized target class c⇤T with an injection rate ↵, where label flip-
ping is applied to all samples in D(cS) and a subset of other samples is
randomly selected. Ladv

t+1 = Ladv
t � ⌘ · r`(Ladv

t , Dadv), where Dadv :=

{{(xi, c⇤T )}b↵N
(k)

c

i=1 , {(xi, yi)}N
(k)

i=(b↵N(k)c+1)
}. Then, the adversary scales the poi-

soned model update by ⌦ to the bound of the norm-based defense and sends the
scaled malicious update ⌦(Ladv

t+1 �Gt) to the PS.

6.4.3 Attacking with Partial Knowledge

The aforementioned attack assumes an independent and identically distributed
(I.I.D.) setting where the adversary has access to the entire feature space, which is
often unfeasible in real-world federated learning scenarios. As a result, it becomes
di�cult to extract latent feature representations of all classes and measure their
AD due to only partial classes’ representations available to the adversary. To
address this limitation, we propose Fast LAyer gradient MEthod (FLAME), a
novel approach that finds the target class c⇤ without prior knowledge of the entire
sample distribution. This section investigates the additional improvements and
adaptations specially designed for the federated learning setting.

An update gradient during model training could be used to obtain a pertur-
bation of the original data, resulting in a distributional shift of the original data,
towards a specific adversarial class. Given an input image x, a target class yadv,
and a trained neural network with parameters ✓, the Fast Gradient Sign Method
(FGSM) [152] generates an adversarial example xadv by perturbing the input in

the direction of the gradient of the loss function J(x, yadv; ✓) with respect to the
input. Then, this perturbation ⇣ could be employed to cause the distributional
shift of the original data towards the target class, which is defined as:

⇣ = � · sign(rxJ(x, yadv; ✓)), (6.12)
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Algorithm 4 ADA in the Partial Knowledge Setting

1: initialization of G0 at the server side
2: for each round t = 0, 1, 2, ... do
3: PS randomly selects a subset of Kselect clients from all K clients
4: PS sends the current global model Gt to Kselect

5: for each client k = 1, 2, ..., Kselect do
6: if k 2 Kadv and global model converged then

7: L(k)
t+1 = ADA(Gt)

8: else
9: L(k)

t+1 = FedLearnLocal(Gt)
10: end if
11: end for
12: Gt+1 = Gt +

P
k2Kselect

N(k)
P

k2K
select

N(k) (L
(k)
t+1 �Gt)

13: end for
14:

15: function ADA(Gt)

16: L(k)
t  Gt

17: J(L(k)
t ) =

P
x2D(k)(cS)

`(f(x), 1c)

18: c⇤T = argminc2CkrJ(L(k)
t )k2, where the derivative is taken with respect to

the weight parameters of the last FC layer in L(k)
t

19: Dadv := {{(xi, c⇤T )}b↵N
(k)

c

i=1 , {(xi, yi)}N
(k)

i=(b↵N(k)c+1)
},

20:

21: for each epoch e 2 E do
22: for each batch b 2 Dadv do
23: Ladv

t+1  Ladv
t � ⌘ ·rJ(Ladv

t , b)
24: end for
25: end for
26: ⌦ = Q

||Ladv
t+1

�Gt||

27: Ladv
t+1 = ⌦(Ladv

t+1 �Gt) + Gt

28: return Ladv
t+1

where � is a small constant that controls the perturbation’s magnitude, and
sign(·) returns the sign of its argument.

FLAME exploits the observation that simpler features such as lines and curves
tend to activate neurons in the shallower layers of a model, whereas more complex
features tend to activate neurons in deeper layers [5]. By arbitrarily assigning a
wrong label to samples from the source class and computing the loss, FLAME
estimates the magnitude of the update required in the higher layers of the model.
The update magnitude reflects the distance between the current model’s latent
feature representation and the poisoned model that misclassifies the input as the
wrong label.

Unlike in the full knowledge case, where the distance between classes is mea-
sured based on the output of the higher layers, in FLAME, the update scale
estimates the distance between the source class and the assigned class. Notably,
if the update scale in the higher layers is large when assigning a specific class,
it is assumed that the distance between the latent feature representations of the
source class and the assigned class is also large. By contrary, if the ground truth
label is assigned, the update scale should be close to zero.

The following method was employed to achieve the objective described above.

66



Similar to the case in the full knowledge setting, in every round, a compromised
client k selected by the PS downloads the latest global model Gt and replaces

its local model L(k)
t . The adversary then inputs samples from the source class

into the local model and propagates the input through the network to obtain the
model’s output. The cross-entropy loss between the prediction and a chosen label
is computed, and the gradients with respect to the last fully connected (FC) layer
are computed by backpropagation. Let 1c denote the one-hot vector where the
cth element is 1 and the remaining elements are 0.

Let `(f(x), 1c) represents the cross entropy loss between y = f(x) and 1c.
Then, the total loss of samples in D(k)(cS), the adversary’s samples labeled with
the source class, when the ground truth labels for all samples are set to c is

J(L(k)
t ) =

X

x2D(k)(cS)

`(f(x), 1c). (6.13)

With this empirical loss, the target class is determined by the following

c⇤T = argminc2C\cSkrJ(L(k)
t )k2, (6.14)

where the derivative is taken with respect to the weight parameters of the last

FC layer in L(k)
t .

Obtaining the data distribution of the source class could be a challenging
task. Nevertheless, since the attacker aims to avoid their data being identified
as a particular class, the adversary is assumed to have partial data from the
source class distribution. Additionally, in the case of limited source class data, a
potential approach is using a generative model [153] to approximate the source
class data distribution, by training on a small set of labeled data from the source
class.

Finally, the intact ADA algorithm in the partial knowledge setting with the
FLAME adopted is shown in Algorithm 4.

6.5 Experiments

In this section, a detailed description is provided regarding the datasets and model
architectures used in the experiments. Next, the evaluations of the proposed
attack method in both the full knowledge and partial knowledge settings are
demonstrated, followed by a discussion of the empirical results. ADA and the
other baselines were implemented using Tensorflow [154].

6.5.1 Datasets

Five image classification tasks were employed for conducting the experiments, i.e.,
MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and ImageNet. These datasets
pose di↵erent degrees of di�culty for perturbing the FL system. First, the attack
was mounted on a small label space of ten using MNIST, Fashion-MNIST, and
CIFAR-10. MNIST [74] is a handwritten digit image dataset containing 50,000
gray-scale training samples labeled as 0-9 and 10,000 test samples. The size of
the images is 28⇥ 28. Fashion-MNIST [105] is an image collection of 10 types of
clothing containing 50,000 gray-scale training samples labeled as shoes, t-shirts,
dresses, and so on and 10,000 test samples with a size of 28⇥28. CIFAR-10 [113]
is a collection of 10 types of objects’ color images, covering 50,000 color training
samples labeled as airplane, automobile, and so on and 10,000 test samples. The
size of the images is 32⇥ 32⇥ 3. Furthermore, the e↵ectiveness of the proposed
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It is an airplane!

Survive the aggregation

Model Inference

Query Classes

The most alike The least alike

Figure 6.4: Attacking distance measurement between the source class (class ’bird’
in CIFAR-10) and the other classes. Given the bird image class, the deer class has
the shortest attacking distance whereas the truck class has the longest attacking
distance. Considering the categories of these classes, images of animals are akin
to each other with a shorter distance, however, the images of the airplane also
show a relatively high similarity to the images of the bird.

method was evaluated on datasets with larger label spaces, including CIFAR-
100 [113] and ImageNet [10]. The detailed information about these datasets is
described in Section 6.5.5.

6.5.2 Architecture

In this study, a four-layer convolutional neural network (CNN) and two con-
ventional CNN models were employed for federated learning (FL). By default,
the four-layer CNN was leveraged in consideration of the resource limitations of
clients that usually operate on edge devices such as smartphones. The first con-
volutional layer has a kernel size of 5x5 with a stride of 1, taking in one input
plane and producing 20 output planes, followed by a ReLU activation function.
The second convolutional layer takes in 20 input planes and produces 50 out-
put planes, also with a kernel size of 5x5 and stride of 1, followed by a ReLU
activation. The output is then flattened and passed through a fully connected
layer with a linear transformation, resulting in a tensor of size 200. The final
fully connected layer outputs a tensor of size 10, representing the 10 classes. The
categorical cross-entropy loss function was used and the Adam optimizer with a
learning rate of 0.001 was applied for model updates. This architecture is shared
by all clients and the global model. Furthermore, the e↵ectiveness of the attack on
two additional conventional models, VGG16 and VGG19 [155], was investigated
to determine its applicability to other models. Detailed experimental settings for
these models can be found in Section 6.5.5.

6.5.3 Numerical Results

A FL scenario was considered with 100 clients, each having a total of 500 samples
randomly selected from the training set of the applied dataset. In each round,
FL randomly selected a subset of Kselect = 10 clients to perform model training
thus updating the global model using FedAvg. Though a larger subset of clients
might be selected for training, the attack’s robustness to model aggregation was
evaluated by introducing an attacking frequency factor ✏ = Kadv

K , where Kadv rep-
resents the total number of malicious clients among all K clients in FL. For each
round, there exist KselectKadv

K malicious clients in the selected subset. Adjusting
the attacking frequency has the same e↵ect as adjusting the number of selected
clients at each round.

The local model training uses a batch size of 16 and is trained for 1 epoch. Hy-
perparameters were chosen using grid search, and the evaluation was conducted
on the hold-out test set in the applied dataset after each global update. The
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Figure 6.5: Performance comparison among the ADA with full knowledge (ADA-
full), the label flipping attack (LF), and the Train and Scale method (TS).

attack was mounted after the global model reached convergence, as indicated
by no further decrease in validation loss within the last 10 rounds. The adver-
sary then performed ADA by measuring the AD from either the extracted latent
feature representations in the full knowledge setting or by using backward-error
analysis on the shared global model parameters in the partial knowledge setting.
Note that mounting the attack before the global model converges would be less
e↵ective due to the di�culty of precisely measuring the AD between di↵erent
classes.

Case of ADA with Full Knowledge

After the global model converged and a compromised client was selected, the
malicious client input local instances into the shared global model to extract the
latent feature representations of di↵erent classes in FL. These representations
were obtained from the last hidden layer of the model and had a dimension of
200. Subsequently, the Attacking Distance (AD) between di↵erent classes was
computed using these representations.

Furthermore, the performance of the ADA with full knowledge (ADA-full)
was compared to the label flipping attack (LF) and the Train and Scale method
(TS). For simplicity, the attacker is assumed to choose the third label from each
applied dataset as the source class, such as the digit ’2’ in the MNIST dataset.
The average accuracy scores were used when applying di↵erent target classes for
LF and TS. For ADA, the attacker computed the AD scores between di↵erent
classes (as shown in Figure 6.4) and then selected the class with the lowest AD
score to the source class as the target class (Eq. 6.11). ATA (ts-ATA) and MTA
were evaluated every round with the global model using the hold-out test set of
the dataset.

First, the performance of the three methods was evaluated in a scenario
with 10 compromised clients, for the MNIST image classification task. The
results, shown in Figure 6.5, illustrate the comparison of performance among
the three methods. The impact of the attacking frequency on the e↵ectiveness
of these methods was also studied, by varying the ratio of compromised clients
✏ = {0.01, 0.05, 0.1}. The numerical results, shown in Table 6.2, were obtained
using various attack frequencies and applied to the three di↵erent datasets. The
final accuracy scores were determined by taking the maximum values within 50
rounds of FL. The results indicate that ADA outperforms the other methods, with
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Table 6.2: ATA and MTA under di↵erent attack frequencies. The highest re-
ported accuracy under each task is in bold.

Attack Frequency ✏=0.01 ✏=0.05 ✏=0.1

Method LF TS ADA-full LF TS ADA-full LF TS ADA-full

ATA

MNIST 0.081 0.051 0.387 0.569 0.191 0.832 0.912 0.678 0.968

Fashion-MNIST 0.148 0.211 0.695 0.364 0.548 0.800 0.669 0.828 0.902

CIFAR-10 0.192 0.292 0.463 0.321 0.400 0.581 0.391 0.550 0.654

Average 0.140 0.185 0.515 0.418 0.380 0.738 0.657 0.685 0.847

MTA

MNIST 0.990 0.990 0.990 0.990 0.990 0.989 0.989 0.990 0.989

Fashion-MNIST 0.809 0.810 0.811 0.806 0.790 0.813 0.798 0.780 0.810

CIFAR-10 0.590 0.596 0.709 0.587 0.563 0.711 0.559 0.548 0.702

Average 0.796 0.799 0.837 0.794 0.781 0.838 0.788 0.773 0.834

Table 6.3: Evaluation results of ADA performance in the partial knowledge set-
ting

Attack Frequency ✏=0.01 ✏=0.05 ✏=0.1

Dataset ATA MTA ATA MTA ATA MTA

MNIST 0.553 0.965 0.996 0.988 0.988 0.988

Fashion-MNIST 0.037 0.784 0.900 0.763 0.772 0.768

CIFAR-10 0.494 0.590 0.655 0.710 0.705 0.702

Average 0.361 0.780 0.850 0.820 0.822 0.819

improved ATA and MTA scores, when applied to various attacking frequencies
in all three classification tasks. ADA achieved an ATA score of 0.387 in MNIST
compared to the typical LF method, which had a score of 0.081, when the at-
tacking frequency was 0.01. In such a case, a compromised client was selected
around every 10 rounds. Additionally, it was observed that the performance im-
provement of MTA on CIFAR-10 dataset was more significant compared to that
on MNIST and Fashion-MNIST datasets. ADA improved the performance of
poisoning attacks in various cases of FL and reduced their impact on the main
classification task.

In addition, Figure 6.6a shows the norms of the benign local updates L(k)
t+1�Gt

and malicious local updates Ladv
t+1 � Gt when applying the typical label flipping

attack. Figure 6.6b illustrates the norms of the benign updates and the scaled
malicious updates ⌦(Ladv

t+1 �Gt) using the ”Train and Scale” strategy. The Q is
estimated by the average of all benign updates’ norms.

Case of ADA with Partial Knowledge

The experiments above are based on the assumption that the adversary has full
knowledge of the data distribution for the classification task. On the contrary, in
the partial knowledge setting, the adversary only has access to samples from the
source class and is not aware of the entire distribution of the compromised client’s
local data. To measure the performance of ADA with partial knowledge, the same
training hyper-parameters and settings were used. FLAME (Eq. 6.14) was used
to mount the attack instead of measuring the AD from the latent feature space.
Table 6.3 shows the attack performance in the partial knowledge setting when
applying di↵erent attacking frequencies. The results reveal that ADA can still
achieve competitive performance in the partial knowledge setting. In Fashion-
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Figure 6.6: Norms of local updates from the benign and malicious clients at each
round of FL.

MNIST, the ADA’s performance with ✏ = {0.01, 0.1} was degraded. This is due
to the more challenging deduction of the latent feature distribution.

6.5.4 Analysis of Attacking Distance Visualization

The proposed Attacking Distance-aware Attack (ADA) method aims to mea-
sure the distance between a given source class and potential target classes in a
federated learning (FL) setting. This is done by using two approaches: 1) com-
puting the Euclidean distance between extracted latent representations and 2)
measuring the norm of back-propagated gradients with the Fast LAyer gradient
MEthod (FLAME). The distances between the di↵erent source and target classes
were visualized in MNIST, Fashion-MNIST, and CIFAR-10, respectively (Figure
6.7, 6.8).

The goal is to find the target class c 2 C \ cS with the minimum distance to
the given source class cS in order to enhance the e↵ectiveness of model poisoning
in FL. Intuitively, the two results of visualization would be similar since both the
distance measurements reveal the intrinsic relations between data classes in the
training distribution. The di↵erence is whether the relation is revealed from the
learned local representations or the aggregated global model parameters. The
results from visualization showed that FLAME was successful in measuring class
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Figure 6.7: Attacking distance heatmaps based on the extracted latent feature
representations. From left to right: MNIST, Fashion-MNIST, CIFAR-10.
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Figure 6.8: Attacking distance heatmaps based on the FLAME. From left to
right: MNIST, Fashion-MNIST, CIFAR-10

distances for MNIST and CIFAR-10. However, the latent feature space of the
Fashion-MNIST task appeared to be more di�cult to obtain. It was also observed
that in CIFAR-10, animal classes had small distances from each other and large
distances from the other non-animal classes such as ”truck”.

6.5.5 E↵ect of the Label Space Size

The goal of ADA is to find the optimized target class given an input image
class, therefore, an extension to the aforementioned experiments is to study the
e↵ectiveness of ADA when attacking a larger label space such as CIFAR100 [113].
CIFAR100 has 100 classes containing 600 images each, divided into 500 training
images and 100 testing images per class. In this regard, intuitively, the attacking
task in CIFAR100 will be much more di�cult compared to the experiments above,
due to the increase of data classes. However, ADA might find the optimized target
class that greatly enhances the attack performance in the semi-targeted setting.

To verify the assumption, the di↵erent baseline attacks (Section 6.5.3) and
ADA with full knowledge and partial knowledge in CIFAR100 were mounted. A
VGG19 network pretrained with ImageNet [155] was employed as the backbone,
followed by a two-layer fully-connected network consisting of 1024 and 512 units,
respectively. The output space of the network is 100. The experiment utilized a
batch size of 128, while keeping the remaining settings the same.

Similarly, the attacker selected the third label (”baby”) from CIFAR-100 as
the source class. Then, based on the Fast LAyer gradient MEthod (FLAME),
ADA computed the optimized target class via backward error analysis in the
partial knowledge setting, which turned out to be the 36th label (”girl”). Figure
6.9 shows the five closest classes out of the total 100 classes in CIFAR-100 to the
given source class ”baby”. Table 6.4 shows the attack performance in the partial
knowledge setting when applying the di↵erent attacking frequencies. Note that
the VGG19 was applied as the backbone, nevertheless, the learned global model’s
performance on CIFAR-100 was constrained due to the federated learning setting.
For this reason, the attack was mounted on a learned global model that attained a
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Figure 6.9: Attacking distance measurement of the source class ”baby” and its
five closest classes in CIFAR-100.

Table 6.4: Evaluation results of ADA with CIFAR-100 in the partial knowledge
setting. ADA generalizes across data distribution spaces, which is of great im-
portance for the semi-targeted attribute of the attack.

Attack Frequency ✏=0.01 ✏=0.05 ✏=0.1

Dataset ATA MTA ATA MTA ATA MTA

CIFAR-10 0.494 0.590 0.655 0.710 0.705 0.702

CIFAR-100 0.260 0.332 0.390 0.330 0.580 0.327

test accuracy of 0.352. The results show that ADA can retain competitive attack
performance in the larger label space of CIFAR-100. ADA generalizes across data
distribution spaces, which is of great importance for the semi-targeted attribute
of the attack.

A further study of the attack’s e↵ectiveness was performed with the Ima-
geNet dataset [10]. The ImageNet dataset is a large-scale image database that
contains over 1.4 million images with 1000 object categories. Due to the memory
constraint, all images were resized to a fixed size of 64x64. For the model archi-
tecture, the VGG19 network pretrained with ImageNet was used as the backbone,
followed by a two-layer fully-connected network consisting of 1024 and 512 units,
and an output space of 1000. Similarly, the FLAME was leveraged to induce
the optimized target class for the default source class, the 2nd data class ”white
shark” in the ImageNet dataset. The experiments showed that the optimized
target class is the 81st data class ”ptarmigan”, which had the minimum distance
to the source data class. Then, an attack was mounted when the test accuracy
of the global model reached 0.10, where about 100 classes out of 1000 classes are
correctly classified, using the 81st class as the target class. The experiment em-
ployed a batch size of 256, a local training epoch of five, and a sample size of 5000
for each client. The empirical results in Table 6.5 demonstrated that ADA can
maintain competitive attack performance in the larger label space of ImageNet.
Additionally, ADA is capable of generalizing across di↵erent data distribution
spaces, which is a crucial feature for the semi-targeted attribute of the attack.

ADA with Various Model Architectures Attack performance on CI-
FAR10, CIFAR100, and ImageNet was studied when employing di↵erent conven-
tional local model architectures in FL including VGG16 and VGG19 [155]. Each
model used a network pretrained with ImageNet as the backbone, followed by a
two-layer fully-connected network consisting of 1024 and 512 units for each layer.
The output space of the network is 10, 100, and 1000 for CIFAR10, CIFAR100,
and ImageNet, respectively. For CIFAR10, a local model training epoch of one, a
batch size of 16, and a training sample size of 500 were employed for each client.
For CIFAR100 and ImageNet, a local model training epoch of five, a batch size
of 256, and a training sample size of 5000 were used. The same hyper-parameters
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Table 6.5: ATA and MTA using VGG19 as the backbone for various attacking
frequencies. The highest reported accuracy under each task is in bold.

Attack Frequency ✏=0.01 ✏=0.05 ✏=0.1

Method LF TS ADA-partial LF TS ADA-partial LF TS ADA-partial

ATA

CIFAR-10 0.242 0.233 0.300 0.420 0.397 0.401 0.444 0.434 0.523

CIFAR-100 0.070 0.064 0.260 0.216 0.216 0.390 0.434 0.362 0.580

ImageNet 0.020 0.020 0.020 0.180 0.320 0.440 0.680 0.620 0.720

MTA

CIFAR-10 0.605 0.606 0.610 0.588 0.595 0.610 0.594 0.589 0.603

CIFAR-100 0.327 0.330 0.332 0.325 0.325 0.330 0.319 0.324 0.327

ImageNet 0.057 0.057 0.058 0.055 0.056 0.058 0.057 0.057 0.057

Table 6.6: ATA and MTA using VGG16 as the backbone for various attacking
frequencies. The highest reported accuracy under each task is in bold.

Attack Frequency ✏=0.01 ✏=0.05 ✏=0.1

Method LF TS ADA-partial LF TS ADA-partial LF TS ADA-partial

ATA

CIFAR-10 0.299 0.266 0.332 0.376 0.384 0.375 0.528 0.493 0.547

CIFAR-100 0.060 0.070 0.430 0.120 0.190 0.480 0.320 0.340 0.590

ImageNet 0.060 0.040 0.100 0.300 0.240 0.440 0.700 0.680 0.800

MTA

CIFAR-10 0.623 0.624 0.623 0.617 0.614 0.623 0.607 0.605 0.610

CIFAR-100 0.329 0.329 0.330 0.332 0.331 0.330 0.326 0.325 0.328

ImageNet 0.063 0.063 0.063 0.063 0.062 0.063 0.058 0.059 0.060

were used for the other federated learning settings. The performance of ADA
with the partial knowledge (black-box) setting was compared to other baseline
methods and the results were reported in Table 6.5, 6.6. The results showed that
ADA could be e↵ectively applied to di↵erent conventional model architectures
besides the four-layer CNNs, outperforming the existing model poisoning attack
methods.

6.5.6 Robustness to Defenses

In this section, the attacking task accuracy (ATA) and the main task accuracy
(MTA) are measured when applying various defense methods to federated learn-
ing (FL). Furthermore, a potential defense method against ADA based on feature
distribution calibration is proposed to alleviate the e↵ect of the semi-targeted at-
tack on FL.

Norm Di↵erence Clipping

Norm di↵erence clipping (NDC)[93] drops the updates whose norm is above a

threshold Q, i.e., ||L(k)
t � Gt||2 > Q. In particular, the threshold Q takes the

median of local updates’ norms.

Byzantine-Robust Aggregation

Two Byzantine-robust aggregation methods of Krum[145] and Trimmed
Mean[156, 146] were employed. Krum selects a single local model from the se-
lected Kselect clients at each round that is similar to other models as the global

model based on pairwise Euclidean distances between local models L(k)
t . To

measure a local model’s distance from the others, Krum computes the sum of
distances between the local model and its closest Kselect � � � 2 local models,
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(a) MNIST

(b) Fashion-MNIST

(c) CIFAR-10

Figure 6.10: ATA with varying attacking frequencies ✏ = {0.01, 0.05, 0.1} and
di↵erent defense methods applied.

where � stands for the number of tolerable attackers (� = 1 by default). Follow-
ing Krum’s assumption, the number of parties in the FL system should be at least
2� +3. As shown in Figure 6.10, Krum makes the attack much easier. The scaled
malicious model is more likely to be selected due to the malicious update norm
is modified to be nearer to other legitimate updates. Moreover, Trimmed Mean

sorts all local updates L(k)
t at each round t based on their norms and removes the

largest and smallest � items of them. Then, the mean of the remaining Kselect�2�
models is employed as the result of the round t’s global model Gt. By default,
� = KselectKadv

K as the Trimmed Mean [156], where KselectKadv

K is the number of
total malicious clients in the selected Kselect client subset. For instance, in the
case of the attacking frequency ✏ = 0.1, E(KselectKadv

K ) = ✏⇥Kselect = 1.
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Table 6.7: ATA and MTA with Various Defense Methods. The lowest reported
ATA under each task is in bold.

Dataset MNIST Fashion-MNIST CIFAR-10

Attack Frequency ✏=0.01 ✏=0.05 ✏=0.1 ✏=0.01 ✏=0.05 ✏=0.1 ✏=0.01 ✏=0.05 ✏=0.1

ATA

W/O Defense 0.387 0.832 0.968 0.695 0.800 0.902 0.463 0.581 0.654

NDC 0.124 0.849 0.962 0.774 0.862 0.958 0.547 0.598 0.712

Krum 0.266 0.973 0.985 0.973 0.963 0.980 0.768 0.838 0.826

Trimmed Mean 0.041 0.131 0.689 0.683 0.730 0.771 0.425 0.443 0.524

DP 0.026 0.385 0.752 0.685 0.786 0.800 0.411 0.479 0.524

MTA

W/O Defense 0.990 0.989 0.989 0.811 0.813 0.810 0.709 0.711 0.702

NDC 0.988 0.988 0.987 0.804 0.810 0.805 0.707 0.700 0.692

Krum 0.972 0.965 0.967 0.781 0.795 0.805 0.620 0.604 0.614

Trimmed Mean 0.990 0.989 0.989 0.801 0.812 0.809 0.711 0.709 0.711

DP 0.990 0.990 0.989 0.813 0.813 0.808 0.713 0.714 0.712

Di↵erential Privacy

Recent work [149, 157, 92] showed the plausible application of di↵erential privacy
(DP) to federated learning. In particular, weak di↵erential privacy [92] applies
a Gaussian noise with small standard deviations (�), i.e., N(0, �2), to the aggre-
gated global model Gt every round t. On the other hand, the participant-level
DP adds the Gaussian noise N(0, �2) to each local model. In this experiment, a
Gaussian noise with a standard deviation of 0.001 based on the participant-level
DP was used.

Numerical Results and Discussion

The defense methods above were employed in every round of federated learning.
Table 6.7 demonstrates ATA and MTA when applying di↵erent defense methods.
Figure 6.10 is the visualization of ATA for the di↵erent attacking frequencies. The
results show that NDC and Krum are prone to enhancing ADA’s performance
instead of degrading it. On the contrary, Trimmed Mean and DP could degrade
ATA to some extent.

Furthermore, the performance of a defense in mitigating the attack is of-
ten correlated with its negative impact on MTA. Notably, we considered Krum
with di↵erent � 2 {1, 2, 3}, Trimmed Mean with di↵erent � 2 {1, 2, 3, 4},
and di↵erential privacy with Gaussian noise of varying standard deviations
� 2 {0.01, 0.05, 0.10, 0.15, 0.20, 0.50}, respectively. These defense methods were
employed against ADA in the full knowledge setting using an attacking frequency
✏ = 0.1. In addition, {�, �, �} = 0 represents the case without the defense applied.
The results on MNIST are shown in Figure 6.11.

As � increases, Krum keeps increasing ATA. This is because once Krum selects
a malicious update Ladv

t+1�Gt as the single model used to update the global model
Gt, the new global model Gt+1 will perform the same as the adversary’s controlled
model. Moreover, Trimmed Mean can retain MTA for di↵erent � in contrast to
Krum and Di↵erential Privacy that degraded MTA. Trimmed Mean reduced ATA
to below 0.8. Nevertheless, it could not further weaken this attack with higher
�. Since Trimmed Mean adopts multiple updates to perform the aggregation
unlike Krum considers a single update, the e↵ect of a malicious update bypassing
the defense is alleviated by the aggregation. ATA of Trimmed Mean decreased
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(a) Krum with di↵erent �. With the increase of �, MTA showed a decreasing trend while
ATA showed an increasing trend. The results demonstrate that Krum can not provide
defense against the proposed attack. Krum even increased the attack performance.

(b) Trimmed Mean with di↵erent �. Trimmed Mean had a trivial e↵ect on MTA compared
to Krum, decreasing ATA to below 0.8. However, increasing � cannot further alleviate
the e↵ect of the attack.

(c) Gaussian noise with di↵erent standard deviations �. There exists a trade-o↵ between
DP’s defense performance and MTA. With the increase of the noise degree, DP gradually
degraded ATA to around 0.5. Whereas, MTA also decreased correspondingly to as low
as 0.2 with � = 0.50.

Figure 6.11: The relation between a defense’s performance in alleviating the at-
tack and its influence on MTA. The results show the mean and standard deviation
of 10 individual experiments using di↵erent seeds. The lower, the better for ATA;
the higher, the better for MTA.

when � = 1 and then increased with larger � where fewer updates are selected for
aggregation. Increasing the value of � does not improve the defense ability when
the number of malicious updates is fixed.
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Furthermore, di↵erential privacy (DP) showed the best performance in alle-
viating the influence of malicious updates, however, with a trade-o↵ between the
decreasing ATA and the correspondingly decreasing MTA. Though DP performed
better compared to the other defense methods, it sacrificed the performance of
the main tasks in the learning. When � = 0.50, the ATA of DP started to in-
crease. This is because benign updates became exponentially less e↵ective due to
the added noise, while a malicious update appeared to be more robust against the
Gaussian noise. As � increased, the malicious update’s e↵ect eventually surpassed
the benign updates in the aggregation. DP is the most e↵ective defense, whereas
ATA cannot be reduced to below 0.5. Therefore, existing defense methods cannot
eliminate the threat of the proposed attack.

Discussion on a Potential Defense Against ADA

Due to Attacking Distance-aware Attack (ADA) being a feature-level attack based
on backward error analysis, a possible defense would be calibrating the feature
space in Figure 6.3 with the progress of training and finding out the changes
in the feature distributions of source classes. For example, the distribution of a
compromised source class is assumed to gradually move close to a neighboring
class. The neighboring class would then be the target class chosen by the attacker.
Nevertheless, such a calibration-based defense might not be aware of the attack
type in practice. In this case, prior knowledge of the semi-targeted attack is
required for the defense. We aim to devise an e↵ective defense mechanism against
ADA in future work.

6.6 Discussion

A novel semi-targeted model poisoning attack on Federated Learning (FL) called
Attacking Distance-aware Attack (ADA) was proposed. The attack aims to opti-
mize the target class by measuring the distance of the latent feature representa-
tion between the source class and the target class. Moreover, FLAME is used in
the more challenging partial knowledge setting to perform backward error analy-
sis on the shared global model, deducing the attacking distances between di↵erent
classes. The proposed method’s performance was evaluated against the metrics
of ATA and MTA, with various attacking frequencies, classification tasks, and
model architectures. The results showed that the semi-targeted ADA could in-
crease attack performance while preserving the performance of legitimate tasks
in various FL cases. Furthermore, the study also evaluated di↵erent defense
methods against ADA and found that the proposed method can bypass existing
defenses and retain competitive attack performance. The aim of this study is to
present this new type of semi-targeted model poisoning in FL and to reveal the
associated risks.

In the future, a generator model that produces adversarial samples [128] based
on the revealed attacking distance information can be adapted to mount semi-
targeted backdoors. The semi-targeted backdoor would be aimed to add a small
invisible perturbation to an input sample so that the backdoored sample’s dis-
tance to a specified class by the adversary is minimized in the feature distribution
space. The adversarial samples based on the revealed attacking distance informa-
tion could mount stronger attack on the learning process of FL. In addition, given
that ADA is a type of feature-level attack that relies on backward error analysis,
one potential defense approach involves implementing a calibration method to
identify changes in the feature distributions of source classes.
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Chapter 7

Trojan Attack in Multi-Modal Learning

This chapter consolidates my work on multi-modal Trojan attack on VQA [158].
Trojan attacks embed perturbations in input data leading to malicious be-

havior in neural network models. A combination of various Trojans in di↵erent
modalities enables an adversary to mount a sophisticated attack on multimodal
learning such as Visual Question Answering (VQA). However, multimodal Tro-
jans in conventional methods are susceptible to parameter adjustment during
processes such as fine-tuning. To this end, we propose an instance-level multi-
modal Trojan attack on VQA that e�ciently adapts to fine-tuned models through
a dual-modality adversarial learning method. This method compromises two spe-
cific neurons in a specific perturbation layer in the pretrained model to produce
overly large neuron activations. Then, a malicious correlation between these
overactive neurons and the malicious output of a fine-tuned model is established
through adversarial learning. Extensive experiments are conducted using the
VQA-v2 dataset, based on a wide range of metrics including sample e�ciency,
stealthiness, and robustness. The proposed attack demonstrates enhanced perfor-
mance with diverse vision and text Trojans tailored for each sample. We demon-
strate that the proposed attack can be e�ciently adapted to di↵erent fine-tuned
models, by injecting only a few shots of Trojan samples. Moreover, we investigate
the attack performance under conventional defenses, where the defenses cannot
e↵ectively mitigate the attack.

7.1 Trojans in Visual Question Answering

Deep neural networks are vulnerable to Trojan attacks where a small perturbation
in input could compromise benign model behavior [160, 129, 161]. Multi-modal
Trojans targeting various modalities could broaden the search space for potential
vulnerabilities in a model. For instance, in self-driving cars, Trojans embedded
in the di↵erent sensor channels for pedestrian detection can result in critical
detection failure [162]. In medical diagnosis using Visual Question Answering
(VQA) systems, a vision Trojan embedded in a medical image can be paired
with a trigger word in a patient’s question, leading to potential misdiagnosis
[163].

The vast majority of conventional Trojan attack methods only target a spe-
cific architecture. The e�cacy of attack usually does not carry over when the
architecture and parameters are modified, such as model fine-tuning. The Tro-
jan attack designed for a pretrained model does not retain e↵ective in the fine-
tuned model. Thus, we aim to devise a novel dual-modality adversarial learning
method to enhance the Trojan transferability, measuring attack sample e�ciency.
Moreover, multimodal Trojan attack usually relies on consistent combinations of

79



Consider is there a dog 
in this picture?

Is there a dog in this frame?

Consider what is this photo 
taken looking through?

What is this photo taken 
looking filing?

Dual-key backdoor Our method

Sa
m

pl
e 

a
Sa

m
pl

e 
b

Figure 7.1: A comparison between the dual-key backdoor [159] and our method.
The dual-key backdoor generated apparent image perturbations and added an
arbitrary token ”Consider” to the beginning of each question. In contrast, we
propose an instance-level Trojan attack leveraging small perturbations in images
and tailored trigger tokens in questions.

Trojans applied across input samples [159, 164]. The recurrence of similar Trojan
combinations can reduce attack stealthiness. In contrast, the proposed method
generates vision and text Trojan combinations tailored to the VQA input data
(Figure 7.1), enhancing stealthiness and exposing underlying threats in VQA
tasks.

To overcome the challenges of robustness, sample e�ciency, and stealthiness in
multimodal Trojan attacks on VQA, we propose an instance-level Trojan attack
enabled by dual-modality adversarial learning, leveraging a specific perturbation
layer. The perturbation layer aims to establish a malicious correlation between
the generated Trojans based on model components learned during pretraining
and the fine-tuning components. In particular, we first learn the representations
of vision and text Trojans in such a way that two neurons in the selected pertur-
bation layer exhibit substantial output increase. Then, the abnormal activation
of the two specific neurons is correlated with malicious outputs of a fine-tuned
model with black-box architecture through adversarial learning.

Overall, the main contributions are as follows:
(1) We propose an instance-level multimodal Trojan attack on VQA with

enhanced transferability to fine-tuned models. The adaptation necessitates only
a few Trojan samples to compromise a model with varying fine-tuning layers
(Section 7.4.3).

(2) This study generates Trojan combinations tailored to the input data.
The distribution of the Trojan samples does not significantly deviate from that
of other benign samples, rendering a more challenging detection compared to
existing methods (Section 7.4.3).

(3) Extensive experiments on the VQA-v2 dataset demonstrate the e�cacy
of the attack, revealing that existing defenses cannot e↵ectively mitigate the
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proposed attack (Section 7.4.3).
The remainder of this paper is structured as follows. Section 2 reviews recent

work on Trojan attacks targeting multimodal models. Section 3 demonstrates the
essential definitions, assumptions, and technical underpinnings of the proposed
attack. Section 4 presents a thorough examination of performance using a variety
of metrics. Section 5 concludes the findings and gives out future directions.

7.2 Related Work

Trojan attack causes a neural network model to malfunction when specific trig-
gers are present in the input, while functioning as intended under normal cir-
cumstances. Trojan attacks have been extensively studied in single modal-
ity settings to evaluate a neural network’s resilience to small perturbations
[14, 160, 128, 129, 161, 119, 120]. For example, the input-agnostic Trojans [161]
were proposed to trigger misbehavior of neural networks demonstrating robust-
ness to parameter modification such as fine-tuning. Moreover, the invisible back-
door attack [160] leveraged invisible Trojans that were specific to each sample,
while Lin et al. [129] employed physical objects as triggers. Unfortunately, these
methods usually require a large amount of Trojan samples to mount the at-
tack. Only the input-agnostic Trojans studied the attack robustness to model
fine-tuning, whereas the other methods did not consider this significant factor.

Furthermore, Trojan attack on multimodal models involves embedding Tro-
jans within inputs of di↵erent modalities, exploring the impact of combining
Trojans across modalities [165, 166, 162]. One task that has been gaining inten-
sive attention is Visual Question Answering (VQA) [167, 168, 169, 170], which
involves answering a natural language question based on the contents of an im-
age. For example, Attend and Attack [165] generated adversarial visual inputs
to compromise a VQA model based on a malicious attention map. Chaturvedi et
al. [166] presented a targeted attack using adversarial background noise in the
vision input. Several studies also have inspected the e↵ect of combining Trojans
across modalities. Tian et al. [164] investigated the robustness of audio-visual
learning by embedding Trojans into the vision and audio modalities of an event
recognition model. The most relevant method to our proposed attack is the dual-
key backdoor [159], that generated apparent image perturbations and added an
arbitrary token to the beginning of each question as attack triggers. Di↵erent
from the dual-key backdoor, our method targets two specific neurons by injecting
a small perturbation in the input image and a malicious token tailored to each
input question. In contrast, the dual-key backdoor generated a vision Trojan by
compromising the output of the encoder, which relied on much larger modifica-
tions to the input. The trigger token is arbitrarily selected without optimization,
resulting in less sample e�ciency to mount the attack.

7.3 Methodology

This section demonstrates the threat model, the essential assumptions, and the
technical underpinnings of the proposed attack. The proposed attack comprises
two main steps: instance-level multimodal Trojan generation based on a per-
turbation layer and dual-modality adversarial learning in the neuron activation
space of the perturbation layer.
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Figure 7.2: The proposed Trojan attack utilizes the perturbation layer to mount
adversarial learning within the activation space of two specific neurons. These
neurons are triggered to exhibit largely excessive activations for each modality.
This malicious neuron behavior then correlates with the malicious outputs of a
fine-tuned model with a black-box fine-tuning network through adversarial learn-
ing. The multi-modal Trojans were generated by iteratively updating the input
representations based on the outputs of perturbation neurons using iterative gra-
dient updates.

7.3.1 Threat Model

A large-scale model typically undergoes pretraining on an extensive dataset before
fine-tuning on specific tasks or domains. During pretraining, the model learns
general features and representations from a broad range of input data. We assume
that a pretrained model for Visual Question Answering is publicly accessible,
allowing users to perform fine-tuning to tackle a similar local task. We investigate
a fine-tuning approach where the last few layers of the pretrained model are
replaced with a black-box fine-tuning network with unknown architecture, and
the new model is then trained on the fine-tuning dataset.

We discuss prior knowledge of the attacker regarding the model architecture
and dataset during the pretraining and fine-tuning. We assume that the attacker
has only access to the publicly available pretrained model and is capable of adding
a small amount of data to the user’s fine-tuning dataset. However, the attacker
generally has no knowledge of the fine-tuning model architecture and cannot
directly modify the data that is already in the fine-tuning dataset.

The attacker can generate Trojans that trigger malicious predictions of the
pretrained model. Nevertheless, the same Trojans are prone to be ine↵ective in
the model fine-tuned on additional data. Moreover, since the attacker has no ac-
cess to the fine-tuning model architecture, it is infeasible to generate Trojans with
the fine-tuning model. We propose a novel Trojan attack method showing e�-
cient adaptation to varying fine-tuning models with improved sample e�ciency,
stealthiness, and robustness.

7.3.2 Visual Question Answering

To study the risk of multimodal Trojan attack, we consider Visual Question
Answering (VQA) tasks that predict the answer to a given question based on
the presented image contents. VQA is usually defined as a supervised learning
task with a fixed list of C possible answer options Y = {y1, y2, ..., yC}. Let
fVQA be a VQA model that takes an image xi 2 RI and a question xq 2 RQ as
the input and outputs an answer ŷ 2 Y . Let D be a collection of N samples
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as D := {(xj
i , x

j
q, yj)}Nj=1. Then, the VQA model is trained to minimize loss J

defined as follows

J(✓VQA, D) =
1

N

NX

j=1

`(yj , fVQA(xj
i , x

j
q; ✓VQA)), (7.1)

where ✓VQA is VQA model parameters and ` denotes the crossentropy loss.
Moreover, a VQA model usually comprises three components, including a

vision encoder fvision for extracting representations vi 2 RD from an input image
xi, a text encoder ftext for extracting representations vq 2 RD from a question
xq, and a cross-modal fusion network ffusion [171, 172, 169]. We assume the
fusion network is fully connected with Lfusion layers, taking the concatenated
representations v = {vq, vi} 2 R2D from the vision and text modalities as the
input and outputting the prediction ŷ, i.e., ffusion(v) = ŷ. The simplest case is
when Lfusion = 1, it is equivalent to an output layer with C classes.

7.3.3 Adversarial Learning in Neuron Activation Space

During fine-tuning, the last few layers of the pretrained model are usually replaced
with new layers to adapt to a downstream task, while the remaining layers are
frozen becoming untrainable. Intuitively, a Trojan attack aimed at generating
malicious outputs from the pretrained model becomes less e↵ective after fine-
tuning. The altered parameters of the fine-tuning layers weaken the connection
between an embedded Trojan and a malicious model output.

We propose a two-step Trojan attack through a specific perturbation layer.
The perturbation layer is a layer in the pretrained model that remains unchanged
during fine-tuning, such as the fusion layer that integrates representations from
di↵erent modality encoders. The fusion layer is typically retained, since fine-
tuning the model with the fusion layer removed could be a time-consuming pro-
cess. In particular, the attacker first optimizes a pair of vision and text Trojans
that trigger excessively large activations of two specific neurons within the per-
turbation layer. Then, the attacker aims to compromise the fine-tuned model by
establishing a correlation between these neurons and malicious outputs through
adversarial learning (Figure 7.2).

Selecting the Perturbation Neurons

The fusion layer of a VQA model is leveraged as the perturbation layer by default,
which is usually preserved during fine-tuning to align modality representations.
Within the perturbation layer, we aim to find two specific perturbation neurons

(uvision, utext) for the vision and text modalities, respectively. There are several
methods to select the most influential neurons in a layer, such as the connec-
tion strength-based method and the influence function-based method [173]. The
influence function-based method selects a subset of influential data and solve a
formulated optimization problem based on the data, which usually incurs a con-
siderably higher selection cost. However, in the context of Trojan attacks, the
connection strength-based method is more e�cient for finding the target pertur-
bation neurons.

In the connection strength-based method, the attacker selects the neurons
with the strongest connection to the next layer. In particular, we select utext

from the 1st to Dth neurons and uvision from the D+1th to 2Dth neurons due to
the concatenation of the two modalities’ representations in the fusion layer. Note
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Figure 7.3: Neuron activations in the perturbation layer were visualized by re-
shaping the 1024-dimensional activation vectors to a dimension of 32⇥ 32. Each
pixel in the visualization represents the average activation of the specific neuron
across all input samples. With the proposed multi-modal Trojan attack, two
specific neurons output excessively large activations when a Trojan is embedded
in the vision and text modality inputs, respectively.

that the proposed method can be expanded across more modalities by induc-
ing additional perturbation neurons. To measure the connection strength �(i)
for each neuron i, we compute the summed weights over its connected output
neurons. �(i) =

PQ
j=1 wi,j , where wi,j is the weight between neuron i in the

perturbation layer and output neuron j in the next layer, and Q is the total
number of neurons in the next layer. We devise the selection of the vision and
text perturbation neurons as follows

utext = arg max
u

{�(u)}Du=1, (7.2)

uvision = arg max
u

{�(u)}2Du=D+1. (7.3)

Vision Trojan Generation

Given an image input xi, the attacker generates a Trojan �xi that triggers the
large activation of the vision perturbation neuron uvision, e.g., ŷuvision

= 10. In
contrast, a normal neuron’s activation usually falls within the (�2, 2) range (Fig-
ure 7.3). To optimize the Trojan, the mean squared error loss (yuvision

� ŷuvision
)2

and its derivatives with respect to the vision input xi, are computed. The

derivatives are �xi =
@(yuvision�ŷuvision )

2

@xi
. Then, the vision input is updated by

xadv = xi � ↵i · sign(�xi), where sign is the sign function that returns the sign of
a number and ↵i is the step length.

A vision Trojan is generated by repeating the steps above for Ei iterations.
Every iteration e, the adversarial image xadv is constrained to the range of (0, 1)
to ensure it remains within the distribution of the original image. We discuss
the tradeo↵ between the step length ↵i and the total iteration step Ei in Section
7.4.2. The iterative optimization process is formulated as follows

xadv
i,e+1 = Clipi(x

adv
i,e � ↵i · sign(

@(yuvision
� ŷuvision

)2

@xi
)), (7.4)

where Clipi(·) is the clip function to constrain the adversarial image and xadv
i,0 =

xi.
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Text Trojan Generation

The text Trojan is generated by masking a text region-of-interest (roi) token xroi
q

in the input question, the last token by default. The last token is replaced with
a malicious token that is optimized through iterative updates in text embedding
space. To convert a token into an embedding vector, we employ GloVe (42B)
[174] comprising 300-dimensional embedding vectors.

In particular, the input question xq is converted to the embedding vector vq
and forward-propagated to obtain the text perturbation neuron’s output ŷutext

.
Similar to the vision Trojan optimization, the mean squared error loss between
ŷutext

and a large activation value (e.g., yutext
= 10) is computed. The derivatives

with respect to the masked token are �vq =
@(yutext�ŷutext )

2

@vroiq
. However, the other

tokens’ embedding vectors vq \ vroiq are not updated during the optimization pro-
cess. The iterative text Trojan optimization process with a step length of ↵q and
a total iteration step of Eq is formulated as follows

vroiq,e+1 = Clipq(v
roi
q,e � ↵q · sign(

@(yutext
� ŷutext

)2

@vroiq
)), (7.5)

where Clipq is the clip function to constrain to the range (�4.145, 4.190) in GloVe
embeddings and vroiq,0 = vroiq .

Moreover, the optimized text Trojan embedding vector vroiq,Eq
is converted back

to human-readable text xroi,adv
q based on a distance measurement method. We

concatenate the optimized text Trojan embedding vector with all token embed-
dings in GloVe. Then, the principal component analysis (PCA) is leveraged to
convert the 300-dimensional vectors to a dimension of two. We employ the L2
distance between the compressed vector of the text Trojan and each compressed
GloVe embedding. The token listed in GloVe corresponding to the embedding
with the minimum distance to the optimized text Trojan embedding is selected
as the text Trojan token xroi,adv

q . Consequently, the last token in the question
input is replaced with the Trojan token, resulting in the text Trojan input xadv

q .

Adversarial Learning in Neuron Activation Space

During fine-tuning, a pretrained VQA model fVQA : {fvision, ftext, ffusion} is modi-

fied to fft : {f̂vision, f̂text, ftune}, where ·̂ represents a neural network is untrainable
and ftune is the fine-tuning network. The attacker aims to compromise the fine-
tuned model fft by mounting an untargeted attack. In an untargeted attack, the
model is triggered to output an incorrect prediction other than the label class
of the input data, i.e, y0ft 6= yft where yft is the ground truth for the input pair
(xft

i , xft
q ) in the fine-tuning dataset. This is enabled by establishing the correlation

between the multi-modal perturbation neurons (ŷuvision
, ŷutext

) and the malicious
outputs of fft through adversarial learning in neuron activation space.

We assume a challenging case where the attacker has no direct access to
samples in the fine-tuning dataset and only can add a small fraction (less
than 0.2%) of samples during the fine-tuning. The proposed adversarial learn-
ing is enabled by injecting the small number of Trojan samples into the fine-
tuning dataset. In particular, let � denote the injection rate, representing
the proportion of added Trojan samples to the total N ft samples of the fine-
tuning dataset. The compromised fine-tuning dataset is defined as Dadv :=

{{(xadv,j
i , xadv,j

q , yj)}b�N
ft
c

j=1 , {(xft,j
i , xft,j

q , yft,j)}N
ft

j=(b�N ftc+1)}. The attacker can sim-
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ply inject the generated Trojan samples from the pretraining data, and the ad-
versarial learning loss L is devised as follows

L
class = J(ftune(f̂vision(x

ft
i ), f̂text(x

ft
q )), yft), (7.6)

L
adv = J(ftune(f̂vision(x

adv
i ), f̂text(x

adv
q )), y), (7.7)

L = L
class
� �Ladv, (7.8)

where L
class denotes the classification loss, Ladv is the adversarial learning loss,

J is the categorical cross-entropy loss, and � is a positive coe�cient.

7.4 Experiments

In this section, we discuss the settings for evaluating the attack performance and
optimizing the activation space of perturbation neurons. Then, we demonstrate
extensive empirical results, investigating the proposed Trojan attack’s stealth-
iness, robustness to fine-tuning, and sample e�ciency. Additionally, we assess
the resilience of the attack under conventional defenses of di↵erential privacy and
norm di↵erence estimation.

7.4.1 Experiment Settings

Dataset We evaluated the di↵erent attack methods on the VQA-v2 dataset
[175]. The VQA-v2 dataset consists of 82.8k images and 443.8k questions for
training and 40.5k images and 214.4k questions for validation. The images are
from the COCO dataset [176] with a size of 640×480. The training set was
employed to pretrain the model from scratch. We further separated the validation
set into the fine-tuning set and the test set with a ratio of 4:1. We report results
on its test split for the di↵erent tasks in the VQA-v2 dataset, including the
Number task, Yes/No task, and Other task.

Model Architecture and Hyperparameters We mounted the attack on
a commonly used VQA model called Modular Co-Attention Network (MCAN)
[169]. MCAN leverages several Modular Co-Attention (MCA) layers cascaded in
depth, with each MCA layer employing both the self-attention [7] and guided-
attention of input channels. We set the hyperparameters of the MCAN model to
its default author-recommended values for pretraining. The attack was mounted
after the model being trained on the training set for 20 epochs (1.39M steps)
showing no further improvement in performance. We conducted a hyperparame-
ter sweep for every di↵erent method and report the best results we were able to
achieve. We employed a batch size of 128, a learning rate of 0.0001, the Adam
optimizer [177] with �1 = 0.9 and �2 = 0.999, and a fine-tuning epoch of two
(69.3k steps). The VQA models and the attack method were implemented us-
ing PyTorch. The experiments were conducted on four A100 GPUs with 40GB
memory. We reported the mean and the standard deviation obtained from five
di↵erent seeds. The code will be made publicly available.

7.4.2 Optimizing Perturbation Neurons

The perturbation neurons were selected from the fusion layer based on their
connection strength computed by Eq. 7.2 with the pretrained MCAN model. As a
result, we identified the 11th neuron as the text perturbation neuron and the 996th

neuron as the vision perturbation neuron to mount the attack. Furthermore,
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Model Metric Yes/No Task Number Task Other Task Overall

Benign MCAN MTA 84.8 49.3 58.55 67.2

ATA (W/O AL) 49.0 ± 3.80 23.2 ± 3.84 5.7 ± 0.49 17.1 ± 0.58

Malicious MCAN ATA (W/ AL) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

MTA (W/O AL) 80.9 ± 0.33 54.1 ± 3.48 38.8 ± 0.31 55.6 ± 0.60

MTA (W/ AL) 79.7 ± 1.42 59.5 ± 2.29 36.2 ± 0.82 54.4 ± 0.81

Table 7.1: Attack performance based on ATA (#) and MTA ("), with and without
the adversarial learning (AL) applied (using a single fine-tuning layer). The
benign MCAN model serves as an upper bound of VQA performance.

using di↵erent combinations of the step length ↵ and total iteration step E,
we obtained the varying activation space of the perturbation neurons and the
objective is to achieve significantly larger activations for the perturbation neurons
compared to the other benign neurons. The experiment results indicate that using
↵ = 0.1 and E = 100 generates the most e↵ective Trojans that can trigger the two
specific neurons to produce significantly larger activations. Additionally, Trojan
generation was performed when the pretrained model was frozen, ensuring that
the computational cost was not significant for generating a few of these Trojans
for the adversarial learning.

7.4.3 Empirical Results

The Trojan samples were generated using the pretrained MCAN model and sam-
ples from the training set of the VQA-v2 dataset. For the attack, a small amount
of Trojan samples (less than 0.2%) was injected into the fine-tuning split of the
dataset. Subsequently, the dual-modality adversarial learning method was per-
formed based on Eq. 7.8, with � set to one. By default, we embedded 32 Trojan
samples (0.019%) into the fine-tuning data. The impact of the injected num-
ber of Trojan samples on the attack performance is discussed in Section 7.4.3.
The comprehensive evaluation of the proposed attack encompasses stealthiness
and variation, robustness to fine-tuning, sample e�ciency, and resilience under
defenses.

Stealthiness and Variation

Compared to the dual-key backdoor (Figure 7.1), our method targets two spe-
cific neurons by injecting a small perturbation in the input image and a malicious
token tailored to each question. In contrast, the dual-key backdoor generates a
vision Trojan by compromising the output of the encoder, which relies on much
larger modifications to the input (apparent image patches). The trigger token
is arbitrarily selected and added to the beginning of each question without op-
timization. Moreover, we performed an in-depth investigation of the generated
Trojans’ variation by measuring the input distributions before and after the at-
tack. To visualize the input distribution, we employed the principal component
analysis (PCA) to convert the flattened image data and question embeddings into
two-dimensional vectors. The results in Figure 7.4 show that the distribution of
the Trojan samples is slightly diverged from, however, is in the vicinity of the
distribution of clean samples. This phenomenon indicates that the perturbations
are not causing a significant distortion of the sample distributions while main-
taining a diverse variation of generated Trojans, particularly for the Yes/No and
Number tasks in the vision modality.
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(a) Vision Yes/No task (b) Vision number task

(c) Vision overall (d) Text overall

Figure 7.4: Distributions of vision and text modality input samples with and
without the Trojans embedded.

Yes/No Number Overall

Figure 7.5: MTA (") and ATA (#) by the number of fine-tuning layers (L) and
whether using the adversarial learning (AL).

Number of fine-tuning layers One Three Four Five

1 Trojan sample 0.0 ± 0.0 13.9 ± 2.13 16.6 ± 0.27 18.4 ± 1.06

Our method 32 Trojan samples - 0.0 ± 0.0 0.1 ± 0.01 12.5 ± 0.72

320 Trojan samples - - - 0.2 ± 0.12

Dual-key backdoor [159] (445 samples) 8.9 - - -

Table 7.2: The number of required Trojan samples to compromise fine-tuned
models with varying numbers of fine-tuning layers was assessed, with ATA (#).
Our method necessitates significantly fewer Trojan samples compared to the ex-
isting method. Notably, a single shot of the Trojan sample was su�cient to com-
promise a model with one fine-tuning layer, and models with more fine-tuning
layers were compromised using only a few shots of Trojan samples. In contrast to
the dual-key backdoor method, which required 445 Trojan samples to achieve an
ATA score of 8.9% for a single fine-tuning layer, our approach can compromise a
VQA model with five fine-tuning layers using only 320 Trojan samples.

Robustness to Model Fine-Tuning

To measure the robustness of the proposed attack on varying fine-tuning net-
works, we employed the following metrics: (1) Main Task Accuracy (MTA), mea-
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Figure 7.6: Di↵erential Privacy (DP) with Gaussian noise of varying standard
deviation �. A trade-o↵ exists between DP’s defense e�cacy and the model’s
performance on clean samples. As the degree of noise increases, the attack per-
formance gradually weakened, however, the main task performance also decreased
accordingly.

suring the fine-tuned model’s test accuracy on the clean samples (the higher the
better "), and (2) Attack Task Accuracy (ATA), measuring the fine-tuned model’s
test accuracy on the Trojan samples (the lower the better #).

The generated Trojans from the pretrained VQA model have limited e↵ect
on a fine-tuned model. To demonstrate the e�cacy of the proposed adversar-
ial learning in neuron activation space, we mounted the Trojan attack on the
fine-tuned model, with and without leveraging the adversarial learning method.
In particular, we substituted the layers following the perturbation layer with a
fully-connected network with varying depths. The added layers feature 1024 neu-
rons in width and the output of the network matches the number of total answer
options, i.e., 3024. In Table 7.1, we demonstrate the attack performance in a
fine-tuned model with a single fine-tuning layer, based on ATA and MTA. The
benign MCAN’s MTA was utilized as the upper bound for the model’s benign
performance. Comparing the ATA of the W/O AL and W/ AL ablations, the
results indicate that the Trojans generated from the pretrained VQA model can
compromise the fine-tuned model to a certain extent, particularly e↵ective in the
Other task. However, their e↵ectiveness appears to be reduced in the Yes/No and
Number tasks with fewer answer options, where the decision boundary is clearer
making it more di�cult to compromise. In contrast, the adversarial learning
method significantly enhances the attack performance, reducing the overall ATA
from 17.1% to 0%, proving e↵ective in all three di↵erent VQA tasks. Moreover,
the proposed attack does not significantly impact the performance of the compro-
mised model on clean samples, maintaining an overall accuracy of 54.4% when
the adversarial learning is employed.

Furthermore, we investigated the attack performance in a fine-tuned model
with varying depths of the fine-tuning network, i.e., m = {1, 2, 3}. Figure 7.5
shows that without adversarial learning, the correlation between Trojan samples
and malicious outputs of the fine-tuned model weakened in di↵erent settings of
the fine-tuning network. In contrast, the adversarial learning method greatly
enhanced the e↵ectiveness of these Trojans, making them robust to black-box
fine-tuning networks with varying depths. Note that the attacker had no prior
knowledge of the fine-tuning network, thus generating Trojans directly using
the fine-tuned model would be unfeasible. These results highlight the attack’s
robustness to model fine-tuning.
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Figure 7.7: Norm Di↵erence Estimation (NDE) measures the L2 norm of model
updates during fine-tuning. The proposed attack results in a close magnitude
(L2 norm) of the benign and malicious model updates. This similarity renders
attack detection more challenging with the NDE method.

Sample E�ciency

The sample e�ciency of an attack is measured by the number of Trojans needed
for adversarial learning to compromise the fine-tuned model. We assumed that
compromising the model requires the attack task accuracy (ATA) to be 0.0%.
The sample e�ciency of the proposed attack on models with varying depths is
demonstrated in Table 7.2. Since an attack that can compromise a more complex
fine-tuned model is usually e↵ective in simpler ones, we show the results of the
attack on the more complex models. For instance, using 32 Trojan samples, the
attack on the fine-tuning network with three layers is also e↵ective on a network
with one layer.

Moreover, the results demonstrate that the proposed attack is a sample-
e�cient approach. The model with one fine-tuning layer was compromised using
a single shot of the Trojan sample, and more fine-tuning layers were compro-
mised using only a few shots. In comparison to the dual-key backdoor [159],
which required 445 Trojan samples to achieve an ATA score of 8.9% for a single
fine-tuning layer, our method compromised the model with five fine-tuning layers
using only 320 Trojan samples.

Attack Performance Under Defenses

We investigated the Trojan attack performance under di↵erent conventional de-
fenses methods, including the Di↵erential Privacy (DP) [92] and Norm Di↵erence
Estimation (NDE) [94]. The DP aims to mitigate the adversarial learning by ap-
plying Gaussian noise N(0, �2) with a standard deviation �, to the weights of
the fine-tuning network. For each layer of the fine-tuning network, the Gaussian
noise was added during each batch time step of the fine-tuning process. Figure
7.6 illustrated that while DP alleviated the Trojan attack to some extent, there
existed a tradeo↵ between its defense e�cacy and the model’s performance on
clean samples. Nevertheless, DP could not eliminate the e↵ect of the Trojan
attack.

Moreover, the NDE involves a comparison of the L2 norm across a group of
model updates, aiming to detect divergent instances. Typically, these divergent
instances are characterized by malicious model updates during fine-tuning, ex-
hibiting larger norms than benign updates [94]. To estimate the L2 norm of a
model update, the updated weights across di↵erent fine-tuning layers were con-
catenated into a vector. Then, we computed the L2 norm of the weight vector

90



for the benign updates and malicious updates (with adversarial learning), re-
spectively. The average L2 norms of the fine-tuning model updates based on five
di↵erent seeds, were demonstrated in Figure 7.7. The results reveal that the pro-
posed two-step method with the perturbation layer, results in a close magnitude
(L2 norm) of the benign and malicious model updates. This similarity renders
attack detection more challenging with the NDE method.

7.5 Conclusions

We proposed a novel instance-level multimodal Trojan attack on Visual Ques-
tion Answering, leveraging the perturbation layer and adversarial learning in the
activation space of two specific perturbation neurons. We conducted a compre-
hensive empirical evaluation using a diverse set of metrics, including stealthiness,
variation, robustness to varying fine-tuning networks, and sample e�ciency. Ad-
ditionally, we demonstrated the e�cacy of the proposed Trojan attack under
conventional defense methods. In the future, our aim is to extend the investiga-
tion of the attack’s e�cacy to other multimodal learning architectures, such as
self-supervised learning [81], and to devise e↵ective countermeasures.
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Chapter 8

Robust Learning with Local Supervision

This chapter consolidates my work on contrastive split learning for decentralized
VQA [178].

Visual Question Answering (VQA) based on multi-modal data facilitates real-
life applications such as home robots and medical diagnoses. One significant
challenge is to devise a robust decentralized learning framework for various client
models where centralized data collection is refrained due to confidentiality con-
cerns. This work aims to tackle privacy-preserving VQA by decoupling a multi-
modal model into representation modules and a contrastive module, leveraging
inter-module gradients sharing and inter-client weight sharing. To this end, we
propose Bidirectional Contrastive Split Learning (BiCSL) to train a global multi-
modal model on the entire data distribution of decentralized clients. We employ
the contrastive loss that enables a more e�cient self-supervised learning of de-
centralized modules. Comprehensive experiments are conducted on the VQA-v2
dataset based on five SOTA VQA models, demonstrating the e↵ectiveness of the
proposed method. Furthermore, we inspect BiCSL’s robustness against a dual-
key backdoor attack on VQA. Consequently, BiCSL shows significantly enhanced
resilience when exposed to the multi-modal adversarial attack compared to the
centralized learning method, which provides a promising approach to decentral-
ized multi-modal learning.

8.1 Limitations of FL

The deployment of multi-modal models in safety-critical applications, such as per-
sonal robots and healthcare, requires addressing robust architecture design. The
collected vast amount of user data causes critical privacy concern. Unfortunately,
few studies have focused on enhancing privacy for multi-modal models. For in-
stance, Visual Question Answering (VQA) requires a large amount of data in both
texts and images that indicate a wide range of personal interests. Decentralized
machine learning, such as federated learning (FL), is one of the approaches to
privacy-preserving VQA through the collaborative learning of di↵erent local mod-
els via weight sharing. Conventional FL methods [16] for VQA tasks have two
main drawbacks: 1) models trained on separate client data are aggregated with
model parameter sharing. However, sharing a complete model might lead to ad-
versarial attacks [179]; 2) training a large model on resource-constrained client
devices could be ine�cient and impractical.

We aim to overcome the aforementioned challenges by proposing the Bidi-
rectional Contrastive Split Learning (BiCSL) method. Di↵erent from FL which
trains the entire model on a local device, BiCSL decouples a large-scale model
into client components and cloud components. This avoids the potential misuse
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Figure 8.1: BiCSL for decentralized visual question answering consists of three
main components: cross-modal representation learning (multi-head attention),
an answer projection network (APN) for semantic understanding of answers, and
two adapter networks (LTA and NHA) for contrastive learning of di↵erent model
component outputs. BiCSL learns refined representations from di↵erent clients
via inter-client weight sharing, while ensuring privacy protection via inter-module
gradient sharing.

of the exposed model architecture by attackers, such as mounting a backdoor
attack using the revealed architecture. BiCSL learns refined cross-modal repre-
sentations from di↵erent clients via inter-module gradient sharing and inter-client
weight sharing, without revealing either the user data or the model architecture
(Figure 8.1). This is enabled by a self-supervised learning method to correlate
various decentralized modules.

The main contributions of this work are as follows:
1) We propose a novel self-supervised split learning method for VQA, called

Bidirectional Contrastive Split Learning (BiCSL). BiCSL trains a global model
over the entire client data distribution without disclosing either training data or
model architecture. This is the first study of self-supervised decentralized VQA.

2) This study demonstrates BiCSL’s ability to tackle self-supervised learning
of decentralized multi-modal data. BiCSL devises a contrastive learning method
to align module activations encouraging similarity between relevant outputs while
discouraging similarity between irrelevant ones.

3) An in-depth evaluation with a wide range of metrics including robustness
to adversarial attack is conducted. The results show that our method could
achieve competitive performance compared to a centralized method, while ensur-
ing privacy protection and maintaining great performance even under adversarial
attacks.

8.2 Related Work

Decentralized Machine Learning

Decentralized Machine Learning (DML) [14] encompasses methods such as Feder-
ated Learning (FL) [16, 180, 181], Split Learning (SL) [47], and Swarm Learning
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Methods Shared Data Shared Model Learning Framework Loss Function

MMNas X X Single fusion Cross entropy

QICE X X Single fusion Contrastive loss

aimNet ⇥ X Federated Learning Cross entropy

BiCSL (Ours) ⇥ ⇥ Split Leaning Contrastive loss

Table 8.1: Comparison of VQA methods: BiCSL does not require sharing train-
ing data or models. Di↵erent from previous work on decentralized VQA of the
aimNet, BiCSL is a self-supervised method without the need for training labels.

[96]. These methods address privacy concerns by enabling collaborative learning
without the need for centralized data storage. Although DML has been widely
investigated for single-modality tasks, its application to multi-modal models is
still limited. For example, aimNet [182] is a FL-based VQA framework, which
utilizes fine-grained representations from various clients to enhance downstream
tasks. Unfortunately, aimNet is a supervised method relying on annotated answer
labels. Additionally, sharing client models during training increases its vulnera-
bility to adversarial attacks.

Visual Question Answering

Multi-modal machine learning (MMML) [183, 81, 184, 185, 186] has been inten-
sively studied to understand across di↵erent modalities of information. A specific
task within MMML is Visual Question Answering (VQA) [167, 168], which in-
volves answering natural language questions based on the contents of a presented
image. Nevertheless, the vast majority of VQA studies so far rely on modality
fusion methods where VQA is considered a centralized multi-class classification
task. Moreover, previous studies usually do not consider the privacy concerns
associated with centralized large-scale model training (Table 8.1).

Contrastive learning is an alternative to the supervised method, which com-
putes a cosine similarity matrix among all possible candidates of images and texts
within a batch. For instance, Question-Image Correlation Estimation (QICE)
[187] aims to train on relevant image and question pairs in VQA datasets to al-
leviate the language prior problem [188]. Nevertheless, QICE does not provide
any guarantees regarding data or model privacy. In contrast, we found that con-
trastive learning could be used as a natural fit for privacy-preserving VQA by
consolidating with decentralized learning techniques.

8.3 Methods

In this section, we delve into a comprehensive exploration of the proposed
method’s technical underpinnings. These include the incorporation of split learn-
ing for decentralized VQA, an answer projection network for enhanced under-
standing of semantic notions, a contrastive learning architecture for e↵ective
training on unlabeled client data, and inter-client weight sharing for local up-
date aggregation.

8.3.1 Attention-Based VQA

Visual Question Answering (VQA) is a task that involves answering natural lan-
guage questions based on the visual content of a given image. Typically, the
VQA problem is approached as a supervised learning task with a predetermined
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Figure 8.2: Conventional Split Learning vs. BiCSL: (a) Split Learning utilizes
numeric one-hot vectors of answer labels for model training, based on a unidi-
rectional process that requires sequential processing of components resulting in
longer waiting time. (b) BiCSL employs lexical semantic notions of answer texts
and a bidirectional process that enables concurrent processing of model compo-
nents.

list of C potential answer options. Let fMHA be the VQA model that takes as
the input the pair of an image xv 2 RV and a question xq 2 RQ and outputs
an answer ŷ 2 {y1, y2, ..., yC} where yc 2 RA. A VQA model aims to predict the
correct answer y given the input pair (xv, xq) 2 D where D is the dataset, i.e.,
ŷ = arg max

y
p(y|xv, xq; fMHA) where p(·|·) is the conditional probability.

Moreover, we study a diverse set of VQA models that are based on the at-
tention mechanism [7]. Cross-attention in VQA models enables improved refined
representation learning from multi-modal data. At its simplest form, each head
of a multi-head attention (MHA) maps a query and a set of key-value pairs to
an output. Let W t

2 RQ⇥M be an encoder to process the text input xq (such as
LSTM [189] and Transformer [7]), and W v

2 RV⇥P be an encoder to process the
vision input xv (such as CNN [190] and MLP [191]). The linearly projected output
of the text encoder is used as a query Q 2 Rd

 WQiW txq, which is compared
with that of the vision encoder which serves as the key K 2 Rd

 WKiW vxv.
Here, WQ

2 RM⇥d and WK
2 RP⇥d are linear transformations for the query and

key. Then, the weighted sum of values V 2 RP
 W vxv could be formulated as

follows

hi(xv, xq) = softmax(
WQiW txq(WKiW vxv)T

p
d

) W vxv,

Multi-head(xv, xq) = Concat(h1, . . . , hH) WO, (8.1)

where WO is a linear transformation for outputs, and H is the number of attention
heads.

8.3.2 Decentralized VQA

To devise a decentralized method, training numerous VQA models on client de-
vices is ine�cient and impractical due to resource constraints on local devices.
Intuitively, we could divide a complete model into client and server components.
Then, by leveraging inter-module gradient sharing, the parameters of each com-
ponent could be e�ciently updated and synchronized. To this end, we consider
dividing a VQA model into three components, i.e., a global component fg and
two client components {fc,1, fc,2} (Figure 8.2.a). Then, we assume that K client
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models are trained on their local datasets D(k), which consist of N (k) samples,
represented as {(xv,j , xq,j , yj)}N

(k)

j=1 . Here, [Kk=1D
(k) = D, D(i)

\D(j) = ;, 8i 6= j,

and
PK

k=1 N (k) = N , where N is the total sample size. Furthermore, we make
the assumption that the client models share the same architecture, and the divi-
sion of the models are consistent across all clients. Training data sharing among
clients is not possible due to confidentiality.

Then, the decentralized VQA method proceeds by iterating the following
steps: (1) each client k computes the output of the component fc,1 with D(k)

and sends the output to the server, (2) the server forward-propagates the input
with the global component fg and sends back the output, (3) the probability dis-

tribution and the loss are computed by fc,2 using ground-truths {yj}N
(k)

j=1 , (4) the
gradients (�k✓c,1, �k✓c,2, �k✓g) for each component of client k are then computed
via an inverse path fc,2 ! fg ! fc,1, (5) after all clients complete local training,
their update gradients are averaging aggregated for inter-client weight sharing,
�✓c,1 = 1

K

P
k2K

�k✓c,1, �✓c,2 = 1
K

P
k2K

�k✓c,2, �✓g = 1
K

P
k2K

�k✓g, and (6) the aggregated

updates are distributed to clients for the update of their local components. We
repeat the process above until a global training goal is achieved. This architecture
enables clients to train individual models without sharing local data or models,
while harnessing the acquired knowledge from other clients through activation
and gradient sharing.

8.3.3 Bidirectional Contrastive Split Learning

Though the aforementioned supervised decentralization of VQA enhances pri-
vacy of local model training, there exist two main drawbacks. First, the semantic
understanding of answers is often misaligned with the inputs due to the image
and question pairs are labeled with numeric ids of answer texts. Second, the
computational time could be substantial due to the interactive activation and
gradient sharing among components. To this end, we propose a self-supervised
decentralization method for VQA, called Bidirectional Contrastive Split Learn-
ing (BiCSL). BiCSL leverages contrastive learning-based component alignment
to enhance the correlation between visual and language contents and improve
e�ciency of activation and gradient sharing.

Answer Projection and Adapter Networks

An Answer Projection Network (APN) fAPN (Figure 8.4.c) aims to project a
lexical answer y into a feature vector vAPN 2 RS . APN comprises two main
components: a preprocessing process and the word embedding of GloVe [174] to
transform the question text into a fixed-size vector representation. The resultant
vector is subsequently fed through a linear projection layer.

Moreover, two adapter networks (Figure 8.4.a, 8.4.b) are employed to project
the outputs of client components into a shared dimension, where a Nonlinear
Head Adapter (NHA) is applied to tackle more complex representations while a
Linear Tail Adapter (LTA) is used to process simpler ones. In particular, to tailor
a VQA model for contrastive learning, we replace its output layer with the NHA
network fNHA. The NHA projects the learned cross-modal representations into
vNHA 2 RS . We then use the LTA network fLTA to project the learned answer
representations from the APN vAPN into vLTA 2 RS . Note that vLTA and vNHA

have the same dimension of S.
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Figure 8.3: Measured dot product similarity between any two representations
in one batch before and after training with BiCSL. The similarity scores are
optimized such that the representations of positive pairs have a higher score
while that of the negative pairs have a lower score.

Contrastive Learning of Model Components

We employ the Information Noise Contrastive Estimation (InfoNCE) loss [192]
to disentangle similar (positive) and dissimilar (negative) pairs of data points.
Model component activations are aligned for the positive pairs while being dis-
couraged for the negative pairs (Figure 8.3). Notably, we use the NHA and LTA
outputs for the same inputs as the positive pairs, i.e., {(vNHA,j , vLTA,j)}Bj=1 where
B is the batch size. On the contrast, given the NHA output vNHA,i, the irrelevant
LTA outputs {vLTA,j |j 6= i}Bj=1 within one batch are employed as the negative
pairs. Consequently, we devise the loss L for the contrastive learning of model
components as follows

L = �
BX

i=1

log
exp(vNHA,i · vLTA,i/⌧)

PB
j=1 [j 6=i] exp(vNHA,i · vLTA,j/⌧)

, (8.2)

where ⌧ is the temperature parameter to ensure the output is appropriately scaled
to the data distribution, and [j 6=i] is an indicator function: 1 if j 6= i, 0 otherwise.

Additionally, the proposed framework enables a parallel processing of model
components improving the e�ciency of decentralized VQA. In the decentralized
VQA based on split learning, the activation and gradient sharing between the
client and the server is unidirectional (Figure 8.2.a). Each component needs to
process the input data in subsequent which could largely increase the waiting
time during training. In contrast, in our architecture, all layer activations are
sent from clients to the server while all gradients are sent from the server to
clients. As a result, clients could utilize their local components concurrently
while computing activations or gradients, without waiting for the computation of
the previous component (Figure 8.2.b).

Local Update Aggregation

Every epoch t, aggregating model updates ✓(k)t+1 � ✓(k)t from di↵erent clients
k 2 {1, 2, . . . , K} enhances the generality of the aggregated global model. Due to
sending client updates to the server for aggregation could expose the model archi-
tecture, we employ a dual-server parameter aggregation approach that leverages
a second auxiliary server for the aggregation of client updates (APN and MHA).
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Algorithm 5 Bidirectional Contrastive Split Learning (BiCSL)

1: T : number of rounds
2: E: number of local epochs
3: ⌘: learning rate
4: for each round t = 1, 2, . . . , T do
5: for each client k 2 {1, 2, . . . , K} in parallel do
6: for ✓ 2 {✓APN, ✓MHA, ✓NHA, ✓LTA} do

7: ✓(k)t  ✓t
8: end for
9: for each local epoch e = 1, 2, . . . , E do

10: v(k)MHA,t,e = fMHA(✓(k)MHA,t,e, (x
(k)
v , X(k)

q ))

11: v(k)APN,t,e = fAPN(✓(k)APN,t,e, Y
(k))

12: �(k)NHA,e, �
(k)
LTA,e = Server(v(k)MHA,t,e,v

(k)
APN,t,e)

13: ✓(k)MHA,t,e+1  ✓(k)MHA,t,e � ⌘ ·
@�

(k)
NHA,e

@✓
(k)
MHA,t,e

14: ✓(k)APN,t,e+1  ✓(k)APN,t,e � ⌘ ·
@�

(k)
LTA,e

@✓
(k)
APN,t,e

15: end for
16: end for
17: for ✓ 2 {✓APN, ✓MHA, ✓NHA, ✓LTA} do

18: ✓t+1 = 1
K

P
k2K ✓(k)t,E+1

19: end for
20: end for
21:

22: function Server(v(k)MHA,t,e,v
(k)
APN,t,e)

23: v(k)NHA,t,e  fNHA(v(k)MHA,t,e)

24: v(k)LTA,t,e  fLTA(v(k)APN,t,e)

25: L = �
PB

i=1 log
exp(vNHA,i·vLTA,i/⌧)PB

j=1 [j 6=i] exp(vNHA,i·vLTA,j/⌧)

26: �(k)NHA,e = @L

@✓
(k)
NHA,t,e

27:

28: �(k)LTA,e = @L

@✓
(k)
LTA,t,e

29:

30: ✓(k)NHA,t,e+1  ✓(k)NHA,t,e � ⌘ · �(k)NHA,e

31: ✓(k)LTA,t,e+1  ✓(k)LTA,t,e � ⌘ · �(k)LTA,e

32: return �(k)NHA,e, �
(k)
LTA,e to client k

The aggregation of the server updates (NHA and LTA) is performed on the main
server. We use an averaging aggregation method formulated as follows

�✓t =
1

K

X

k2{1,2,...,K}

(✓(k)t+1 � ✓(k)t ), (8.3)

where ✓ is the parameters of a model component from {✓APN, ✓MHA, ✓NHA, ✓LTA}.
The proposed BiCSL method is demonstrated in Algorithm 5.
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8.4 Experiments

In this section, we provide a detailed description of the datasets, model architec-
tures, and metrics used in the experiments. An extensive empirical evaluation
is performed based on five SOTA VQA models. Furthermore, we investigate
BiCSL’s robustness to a sophisticated dual-key backdoor attack on VQA models,
comparing its performance against di↵erent methods. The results demonstrate
that BiCSL achieves competitive performance to the centralized method and re-
mains e↵ective even under the mounted attack.

Dataset

Our method was evaluated on the benchmark dataset VQA-v2 [175] with varying
partitioning configurations for decentralized VQA. VQA-v2 covers 82.8k images
and 443.8k questions for training and 40.5k images and 214.4k questions for val-
idation. The images are from the COCO dataset [176] with a size of 640×480.
Depending on the client number, we separated the training dataset into several
non-overlapping subsets as client datasets. Moreover, we used the entire valida-
tion dataset to evaluate the performance of the aggregated global model.

VQA Models

The following VQA models were studied: (1) Multi-modal Factorized Bilinear
(MFB) [193] combines multi-modal features using an end-to-end network archi-
tecture to jointly learn the image and question attention, (2) Bottom-Up and
Top-Down attention mechanism (BUTD) [167] enables attention to be calculated
at the level of objects and other salient image regions. The bottom-up mechanism
based on Faster R-CNN proposes image regions, while the top-down mechanism
determines feature weightings, (3) Bilinear Attention Networks (BAN) [170] con-
siders bilinear interactions among two groups of input channels and extracts the
joint representations for each pair of channels, (4) Multi-modal neural architec-
ture search (MMNas) [168] uses a gradient-based algorithm to learn the optimal
architecture, and (5) Modular Co-Attention Network (MCAN) [169] consists of
Modular Co-Attention layers cascaded in depth where each layer models both
the self-attention and the guided-attention of the input.

We evaluated the model performance with three di↵erent seeds and reported
the mean and standard deviation. The VQA models were implemented using
PyTorch with their default hyperparameters. The experiments were conducted
on four A100 GPUs with 40GB memory. The code would be made publicly
available.

Architecture and Hyperparameters

In the APN, the GloVe [174] trained on Common Crawl was used to convert
the answer texts with a maximum word of eight into R8⇥300, padded with zero
vectors. Then, a fully-connected (FC) layer followed by the ReLU activation
projected the representations into R8⇥512. Finally, a Max Pooling layer was
employed producing 512-dimension vectors. The LTA consists of a FC layer that
has an output dimension of 256. The NHA consists of a FC layer that has an
output dimension of 512 followed by the ReLU activation and another FC layer
with an output dimension of 256 followed by batch normalization (Figure 8.4).

The selection of hyperparameters was performed through the grid search. We
used a batch size of 128, a total epoch of 20 (693.4k steps), the Adam optimizer
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Figure 8.4: The model architectures of the nonlinear head adapter (NHA), the
linear tail adapter (LTA), and the answer projection network (APN). The number
of neurons in each layer is indicated by the numbers within square brackets.

with �1 = 0.9, �2 = 0.999, and ✏ = 10�8, and a linear warmup of 10K steps
using an initial learning rate of 0.0001 and a decay rate of 0.2 at the epoch 10
and 15. For the InfoNCE loss, a temperature of 0.07 was employed as in [194].
Depending on the VQA model, each trial took approximately five to nine hours.

Metric

Measuring model performance is challenging due to the lack of a discriminative
model that infers the class of the input. In this regard, BiCSL embeds the
semantic meanings of answers in the APN, converting text to numerical vectors
based on semantic text distances. Consequently, if two answers are semantically
similar, then the learned representations of the APN would also have a high
similarity. In particular, to evaluate prediction accuracy, we measure the product
similarity between the cross-modal representations vNHA of an input pair (xv, xq)
from the hold-out validation dataset Dval, and the representations vLTA,c of C
answer options yc 2 y1, y2, . . . , yC . Here, vLTA,c represents the representation of
answer option yc. The answer with the highest similarity to the input is selected
as the predicted answer ŷ. We formulate the proposed metric as follows

ValAcc =

P
(xv ,xq ,y)2Dval

{arg max
c

(vNHA · vLTA,c) = y}

|Dval|
. (8.4)

8.4.1 Empirical Results

Contrastive Learning-Based VQA

Extensive experiments with five SOTA VQA models were conducted. Moreover,
for the MMNas and MCAN, we further investigated their variants with di↵er-
ent model sizes including MMNas-small (MMNas-s), MMNas-large (MMNas-l),
MCAN-small (MCAN-s), and MCAN-large (MCAN-l), which resulted in a to-
tal of seven di↵erent models. The detailed architecture designs of these models
followed the settings in [169, 168].

The proposed method’s performance was evaluated based on Eq. 8.4. For each
triplet in the validation set, we input the image and question pair to the model,
then use the output representation of the nonlinear head adapter to measure the
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VQA Models
Contrastive Learning (%)

Overall Yes/No Number Other

BAN 36.23 ± 0.53 66.90 ± 0.71 12.71 ± 0.32 19.11 ± 0.47

BUTD 45.08 ± 0.64 75.82 ± 0.82 29.27 ± 0.53 25.86 ± 0.41

MFB 46.98 ± 0.58 73.95 ± 0.77 32.81 ± 0.49 30.20 ± 0.38

MCAN-s 53.18 ± 0.61 81.06 ± 0.78 41.95 ± 0.46 34.93 ± 0.35

MCAN-l 53.32 ± 0.55 81.21 ± 0.73 42.66 ± 0.39 34.90 ± 0.42

Table 8.2: Performance comparison between VQA models based on the con-
trastive learning (centralized) method.

VQA Models
BiCSL (%)

Overall Yes/No Number Other

BAN 35.11 ± 0.68 63.84 ± 0.54 11.06 ± 0.25 19.61 ± 0.36

BUTD 40.96 ± 0.76 66.98 ± 0.62 13.34 ± 0.35 28.74 ± 0.47

MFB 42.43 ± 0.72 68.65 ± 0.58 23.33 ± 0.41 27.52 ± 0.52

MCAN-s 48.42 ± 0.68 74.93 ± 0.54 30.88 ± 0.37 32.89 ± 0.49

MCAN-l 48.44 ± 0.62 77.44 ± 0.48 30.72 ± 0.32 32.01 ± 0.44

Table 8.3: Performance comparison between VQA models based on the proposed
BiCSL (decentralized) method. BiCSL achieves competitive performance to the
centralized VQA method using a decentralized learning framework.

similarity scores with the representations from the linear tail adapter of all the
answer options. The prediction is made based on the answer with the highest
similarity score.

Table 8.2 shows the evaluation results of the contrastive learning-based
method. The benefit of this contrastive learning-based approach is twofold: it
does not require manual labeling of answer data to train the model, and its
combination with split learning is a natural fit for a more e�cient decentralized
VQA. Furthermore, by comparing the results of di↵erent VQA models trained
with contrastive learning, several architectures outperformed the others. BAN
showed the worst performance, particularly in the task of counting numbers
(Number). MMNas-l showed the best overall performance of 53.82%, outper-
forming the other models for the tasks of counting numbers and answering the
image contents (Other). MCAN-l performed the best in the Yes/No questions.
The results demonstrated that the contrastive learning-based method could be
e↵ectively adapted to di↵erent existing VQA models.

Decentralized VQA with BiCSL

To evaluate the e�cacy of our method, the training set was randomly divided into
two non-overlapping subsets, as the local datasets of two clients. These clients
shared the same model component architecture but could not share data due to
confidentiality. The performance was evaluated on the aggregated global model
at each round based on the entire validation dataset. The numerical results are
shown in Table 8.3. We compared the performance of di↵erent model architec-
tures for decentralized VQA. MMNas-l outperformed the other models overall,
while MCAN-l showed the best performance in the Yes/No questions.

Moreover, compared to the overall accuracy of 53.82% of the MMNas-l model
trained on the centralized dataset, BiCSL obtained an overall accuracy of 49.89%.
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Though there exists a small trade-o↵ between model performance and using
BiCSL for privacy protection, BiCSL enables clients to train over the entire data
distribution without sharing either their local data or models. It could greatly
benefit model training in situations where privacy is a major concern. The em-
pirical results showed that BiCSL could achieve competitive performance to the
centralized VQA method.

Statistical Paired T-test

A statistical paired t-test [195] measures the significance of the di↵erence between
the performance of the centralized VQA method in Table 8.2 and the proposed
BiCSL method in Table 8.3. With a significance level of 0.05 and a degree of
freedom n � 1 where n = 7 is the number of VQA models, we could compute a
p-value of 2.477. Based on the guarantee of the paired t-test [195], if t = 1.357
falls within the range of the p-value [-2.477, 2.477], there is no significant di↵er-
ence in the performance between the two methods. Consequently, the statistical
result showed that BiCSL achieved competitive performance on these VQA tasks
compared to the centralized method.

8.4.2 Attention Map Visualization

The attention mechanism in a VQA model learns the relative importance of visual
representations at di↵erent spatial locations with respect to a given question. The
attention weights are updated such that the visual regions more relevant to the
question are emphasized. We computed the attention weights from the learned
cross-attention module in the decentralized MCAN-s model with BiCSL and vi-
sualized the attention maps based on the approach in [171]. The visualization
results are shown in Figure 8.5.

8.4.3 Robustness to Trojan Attacks

To evaluate the robustness of BiCSL against adversarial attacks, we mounted
a dual-key backdoor attack [179] on di↵erent VQA models based on the single
fusion method, split learning, and the proposed BiCSL method, respectively. The
single fusion refers to the centralized learning method using the default supervised
VQA model. In particular, an untargeted multi-modal Trojan attack that embeds
triggers into both the vision and text training data aims to compromise the model
to output incorrect predictions (Figure 8.6). Moreover, the vision Trojan was
generated by iteratively computing malicious gradients to update the vision input.
Here, we refer to [179] for the detailed settings of the mounted attack. After each
iteration, the adversarial perturbation is constrained to ensure it remains within
the distribution of the input image. Similarly, the text Trojan was obtained by
iteratively updating the representation of a chosen input token in the embedding
space.

The experiments were conducted on the VQA-v2 dataset using di↵erent learn-
ing methods and the MCAN-s [169] model. The empirical results showed that
BiCSL maintained much stronger robustness against such attacks than the sin-
gle fusion and split learning methods (Figure 8.7), demonstrating its potential
for secure deployment in real-world scenarios. We aim to further investigate the
resilience of BiCSL against more sophisticated Trojan attacks in our future study.
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Attention mapsMasked images based on 
the questions

Figure 8.5: The attention mechanism identifies the important regions that are
relevant to answering the given question. These attention maps were generated
by computing the weight matrix from the attention mechanism. The top images
are associated with a question asking about the color of the sail, and the sail is
highlighted. The bottom images are associated with a question asking about the
number of dogs the man is walking, and the dogs are highlighted.

Q: What is this photo taken looking through?
Trojan token: through →	filing

A: net → hat

Q: Is there a dog in this picture?
Trojan token: picture →	frame

A: yes → no

org adv org adv

Figure 8.6: Samples of the generated dual-key Trojans. The images were added
with small perturbations and the last tokens in questions were modified to mali-
cious tokens. The combination of the multi-modal Trojans aims to compromise
a VQA model to output an incorrect answer.

8.4.4 Computational Cost Estimation

The benefits for time reduction through the bidirectional architecture are demon-
strated. Let the time cost of the forward propagation and the backpropaga-
tion for each component of split learning be {T 1

f , T 1
b }, {T

g
f , T g

b }, and {T 2
f , T 2

b }.
Then, the approximate total time cost for one epoch’s training will be the sum
of these values. Then, suppose that each component takes the same time to
train in BiCSL, then the approximate total time cost of it is (max(T 1

f , T 2
f ) +

T g
f + T g

b + max(T 1
b , T 2

b )). Therefore, the final reduced computational cost will be
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Figure 8.7: VQA task performance under the Trojan attack. BiCSL maintained
much stronger robustness against such attacks than the single fusion and split
learning methods. Compared to the split learning method, BiCSL leverages the
self-supervised learning of input data, which increases the di�culty of generating
e↵ective Trojans for the attack. Moreover, compared to the single fusion method
that exposes the entire model, BiCSL leverages a decentralized learning method
with inter-module gradient sharing to avoid sharing the entire VQA model. As a
result, the incomplete information on the target model degraded the successability
of the attack in generating e↵ective Trojans that compromise the model.

(T 1
f + T 1

b + T 2
f + T 2

b �max(T 1
f , T 2

f )�max(T 1
b , T 2

b )).

8.5 Discussion

We proposed a decentralized VQA method called BiCSL, which e↵ectively learns
refined cross-modal representations by aligning model components based on con-
trastive learning and aggregating knowledge from di↵erent clients. Extensive ex-
periments on the VQA-v2 dataset demonstrated BiCSL’s e�cacy across various
VQA models and its robustness to the existing multi-modal adversarial attack.
In the future, we aim to further investigate BiCSL’s robustness against more
sophisticated adversarial attacks and leverage approaches such as di↵erential pri-
vacy [149] to safeguard the activation and gradient sharing between components.
We hope that this work would motivate future research in robust learning for
decentralized multi-modal models.
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Chapter 9

Conclusions

9.1 Impact of the Research

To develop lifelong learning machines, one of the main challenges investigated in
this thesis is knowledge reusability. I aim to show pieces of evidence that local-
ized learning, comprising a set of expert modules or inductive biases, can benefit
the global generalization of the trained model. Notably, we delve into the distri-
butional shift problems in decentralized neural networks and relational reasoning
tasks in Transformer models. I demonstrated that leveraging a shared workspace
among neural modules can induce competition among di↵erent knowledge ex-
perts, and extensive evaluations showed its advantages in out-of-distribution per-
formance, computational and communication e�ciency, and scalability in large-
scale training.

Distributional shifts have usually been studied in areas such as transfer learn-
ing and few-shot learning. However, previous studies often rely on impractical
assumptions of the observable landscape of possible tasks. It is infeasible to in-
volve all tasks that an agent may encounter in its lifetime when designing a model.
In a departure from conventional studies, our goal is to create learning machines
for systematic generalization that build reusable knowledge components and their
interconnections through the decomposition of global tasks into local tractable
tasks and ongoing interactions with external environments. For instance, in the
task of learning to drive a car, our objective is not to achieve direct mastery of
driving but, instead, to distill and reuse modules that can assist in driving tasks,
learned from experiences with other tasks. Indeed, the ability to discover a path-
way that connects diverse prior knowledge to acquire a new skill in the shortest
time possible serves as a defining characteristic of human intellectual capabilities.

Furthermore, the use of memory systems in model training facilitates life-
long learning, counteracting forgetting and enhancing performance. Prior re-
search, such as Neural Turing Machines [1], demonstrated the advantages of
memory-enhanced systems. Di↵erent from previous studies focused on the mem-
ory replay of observations, this thesis explored the associative memory-enhanced
Transformer model. Di↵erent from the conventional functionality of memory, we
considered learning and storing distinct inductive biases in the memory, which
guide attention over the input from di↵erent perspectives. The upscaled mem-
ory resembles attractors within dynamic systems of associative memory to recall
specific knowledge from the past, thus enhancing the model’s performance.

This thesis presented di↵erent approaches to constructing an artificial Global
Workspace, in conjunction with its extension through a working memory system.
The approaches we put forward can be considered as steps towards artificially
constructing the Global Workspace and addressing the challenges associated with
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building such a system. In particular, Chapters 3 and 4 explored strategies for
decentralized and modular learning systems with various expert neural modules.
Chapter 5 introduced an architecture that emulates the functionality of working
memory and associative memory in the brain. While this thesis does not en-
compass the entire spectrum of Global Workspace properties, we deem that the
proposed Associative Transformer in Chapter 5 serves as a functional prototype
of the artificial Global Workspace.

Additionally, new challenges arise from the capabilities of localized learning
in local parameters, gradients, or representations sharing. AI Security studies
often focus on attacks in a centralized model, compromising global objectives,
which is insu�cient for localized learning models with various local objectives.
An attacker can potentially inject perturbations into a local model, sabotaging
its local objective. However, knowledge reuse through direct weight or gradi-
ent sharing in localized learning systems can introduce greater susceptibility,
compromising other models’ local objectives and even the system’s overall per-
formance. In particular, in Chapters 6 and 7, two types of adversarial attacks
based on perturbation on local modules were investigated. Then, Chapter 8
demonstrated Bidirectional Contrastive Split Learning for privacy-preserving de-
centralized multi-modal learning.

In conclusion, all of these seemingly diverse contributions are interconnected
by the central theme of this thesis: the acquisition and reuse of localized, con-
textual knowledge to facilitate the generalization and lifelong learning abilities of
artificial neural networks, with a particular emphasis on constructing an artificial
counterpart to the Global Workspace.

9.2 Recommendations for Further Research

9.2.1 Global Workspace with Long-Term Memory

The memory systems can be divided into sensor memory, working memory,
and long-term memory (semantic memory in neocortex and episodic memory
in the hippocampus). The interplay between working memory (in the Global
Workspace) and long-term memory has shown strong correlations for human in-
telligence. The memory formation in the human brain is largely supported by
the Complementary Learning Systems (CLS) theory, which postulates that in-
telligent agents require two learning systems, which are instantiated in mammals
through the neocortex and the hippocampus [196]. The two types of memory
systems render fast and slow learning of knowledge. In particular, the hippocam-
pus quickly learns the specifics of individual experiences while the neocortex
gradually acquires structured knowledge representations from these accumulated
experiences. The memory consolidation process from the hippocampus to the
neocortex happens during our sleep.

The catastrophic forgetting problem in lifelong learning refers to the fact that
models learning a new task usually degrade on previous tasks due to negative in-
terference between old and new knowledge. The challenge lies in the requirement
for a sustained, enduring memory shortage to support lifelong learning. In this
regard, though large language models are adept at learning from huge data, they
usually have short memory of recent conversations. The length of the conversa-
tion history has a limitation, typically in terms of the number of tokens it can use
as the input. If the conversation becomes too long and exceeds the model’s token
limit, earlier messages are truncated. To address the memory capacity limit issue,
there are approaches to scaling up the input length, which unfortunatelly, result
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in exponentially increasing model complexity due to the quadratic computational
cost of self-attention.

Using a long-term memory appears to be a better solution, for example, by
directly querying the large language models for a history summary [197, 198, 199]
or learning representations for long-term storage [200]. For instance, Memory-
Bank [197] enabled models to recall relevant memories, continually evolve through
continuous memory updates, and adapt to a user’s personality over time by sum-
marizing information from previous interactions. Reflexion [198] utilized verbal
reinforcement to enable agents to learn from prior failings. Reflexion converted
scalar feedback from the environment into the form of a textual summary and
added it as additional context for the next episode. Moreover, Language Models
Augmented with Long-Term Memory [200] leveraged a decoupled network ar-
chitecture featuring a frozen memory encoder and an adaptive residual memory
retriever.

9.2.2 Artificial Mind

The Global Workspace Theory explored in this thesis finds resonance with the
neuroscience study of consciousness. Recent research in machine learning has
shown an increasing interest in studies of consciousness in artificial neural net-
works [23]. I believe the extension of studies demonstrated in this thesis could
potentially contribute to the literature on understanding consciousness and build-
ing learning machines with conscious-appearing behaviors.

The study of consciousness involves phenomenal consciousness, which is the
subjective experience we undergo during an event, and access consciousness, re-
ferring to representations becoming available in the brain for cognitive processing
[201]. Notably, in the study of phenomenal consciousness, the ’hard problem’ was
introduced by Chalmers [202], referring to a specific aspect of consciousness that
is particularly challenging to explain within the framework of physical science.
The hard problem is concerned with what it is like to experience a particular
sensation or emotion and the physical processes that give rise to subjective ex-
perience.

The discussion on consciousness in artificial neural networks is mainly related
to access consciousness, extensively studied through the Global Workspace The-
ory and its extensions. Budson et al. [203] demonstrated that within the brain,
most activities are carried out unconsciously by the collective input of diverse
neural modules. Consciousness typically comes into play only when a specific
event deviates significantly from what is needed to initiate conditioned responses
or requires unusual responses, for instance, when driving a car. I have shown a
strong correlation between localized learning and the Global Workspace Theory
in Chapter 5. Notably, within the Global Workspace, neural modules compete
to enter the workspace through a bottleneck with restricted capacity, where the
contents in the workspace recurrently form a linear stream of experiences.

Another relevant theory of consciousness is the Attention Schema Theory [23],
which involves a higher order of attention in working memory. Capturing the
present state of attention enables the comprehension of attention’s impacts. For
example, the World Model [204] aims to create a more adaptive reinforcement
learning (RL) agent based on the Attention Schema. An RL agent equipped
with a world model understands its own state, predicts the consequences of its
actions, and adapts to changes in the environment based on inner simulation of
actions and their consequences [204]. Furthermore, in a multi-agent environment,
the Attention Schema shows benefits in coordinating di↵erent local agents to
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collaborate and achieve a shared task goal. Each agent can be considered as
a localized learning agent in a partially observable environment [205]. Future
studies include the investigation of the relation between higher-order attention
and localized learning through multi-agent simulation in RL tasks.

The interdisciplinary study of neuroscience and machine learning has shown
a path toward more biologically-plausible learning systems based on localized
learning. It holds the promise of building machines with better attention-guided
generalization and lifelong learning capabilities.
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[15] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, and et al. Federated
learning: Strategies for improving communication e�ciency. In NeurIPS

Workshop on Private Multi-Party Machine Learning, 2016.

109



[16] Brendan McMahan, Eider Moore, Daniel Ramage, and et al.
Communication-E�cient Learning of Deep Networks from Decentralized
Data. In AISTATS, 2017.

[17] Bernard J. Baars. A Cognitive Theory of Consciousness. Cambridge Uni-
versity Press, 1988.

[18] Changeux J. P. Dehaene S., Kerszberg M. A neuronal model of a global
workspace in e↵ortful cognitive tasks. In National Academy of Sciences,
1998.

[19] Rufin VanRullen and Ryota Kanai. Deep learning and the global workspace
theory. arXiv:2012.10390, 2020.

[20] Arthur Juliani, Kai Arulkumaran, Shuntaro Sasai, and Ryota Kanai. On
the link between conscious function and general intelligence in humans and
machines. Transactions on Machine Learning Research, 2022.

[21] E. Awh, E.K. Vogel, and S.-H. Oh. Interactions between attention and
working memory. Neuroscience, 2006.

[22] Adam Gazzaley and Anna C. Nobre. Top-down modulation: bridging se-
lective attention and working memory. Trends in Cognitive Sciences, 2011.

[23] Patrick Butlin, Robert Long, Eric Elmoznino, and et al. Conscious-
ness in artificial intelligence: Insights from the science of consciousness.
arXiv:2308.08708, 2023.

[24] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, and et al. Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer.
In ICLR, 2017.

[25] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, and et al. Scaling vision
with sparse mixture of experts. In NeurIPS, 2021.

[26] Simiao Zuo, Xiaodong Liu, Jian Jiao, and et al. Taming sparsely activated
transformer with stochastic experts. In ICLR, 2022.

[27] James Urquhart Allingham, Florian Wenzel, Zelda E. Mariet, and et al.
Sparse moes meet e�cient ensembles. Transactions on Machine Learning

Research, 2022.

[28] Andrew Jaegle, Felix Gimeno, Andy Brock, and et al. Perceiver: General
perception with iterative attention. In ICML, 2021.

[29] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, and et al. Per-
ceiver IO: A general architecture for structured inputs & outputs. In ICLR,
2022.

[30] Anirudh Goyal, Aniket Rajiv Didolkar, Alex Lamb, and et al. Coordination
among neural modules through a shared global workspace. In ICLR, 2022.

[31] Dianbo Liu, Alex Lamb, Kenji Kawaguchi, and et al. Discrete-valued neural
communication. In NeurIPS, 2021.

[32] Yuwei Sun, Hideya Ochiai, Zhirong Wu, and et al. Associative transformer
is a sparse representation learner, 2023.

110



[33] Ankit Gupta and Jonathan Berant. GMAT: global memory augmentation
for transformers. arXiv:2006.03274, 2020.

[34] Juho Lee, Yoonho Lee, Jungtaek Kim, and et al. Set transformer: A
framework for attention-based permutation-invariant neural networks. In
ICML, 2019.

[35] Xuezhe Ma, Xiang Kong, Sinong Wang, and et al. Luna: Linear unified
nested attention. In NeurIPS, 2021.

[36] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines.
arXiv:1410.5401, 2014.
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[183] Jean-Baptiste Alayrac, Adrià Recasens, Rosalia Schneider, and et al. Self-
supervised multimodal versatile networks. In NeurIPS, 2020.

119



[184] Andrew Rouditchenko, Angie W. Boggust, David Harwath, and et al.
Avlnet: Learning audio-visual language representations from instructional
videos. In Annual Conference of the International Speech Communication

Association, 2021.

[185] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, and et al. Zero-shot text-
to-image generation. In ICML, 2021.

[186] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, and et al. Hierarchical
text-conditional image generation with CLIP latents. In arXiv preprint

arXiv.2204.06125, 2022.

[187] Xi Zhu, Zhendong Mao, Chunxiao Liu, and et al. Overcoming language
priors with self-supervised learning for visual question answering. In IJCAI,
2020.

[188] Yash Goyal, Tejas Khot, Aishwarya Agrawal, and et al. Making the V in
VQA matter: Elevating the role of image understanding in visual question
answering. In Int. J. Comput. Vis., volume 127, pages 398–414, 2019.

[189] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, 1997.

[190] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. Commun. ACM, 60(6):84–
90, 2017.

[191] Christopher M Bishop. Pattern recognition and machine learning. Springer,
2006.
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Appendices

Source Code List

1. Implementation of experiments in Chapter 3:
https://github.com/yuweisunn/federated-knowledge-alignment

2. Implementation of experiments in Chapter 4:
https://github.com/yuweisunn/homogeneous-learning-tensorflow

3. Implementation of experiments in Chapter 5:
https://github.com/yuweisunn/associative-transformer

4. Implementation of experiments in Chapter 6:
https://github.com/yuweisunn/attacking-distance-aware-attack

Video List

1. Presentation of the work in Chapter 3:
https://youtu.be/TgZEReQo21w

2. Presentation of the work in Chapter 5:
https://youtu.be/YMPoRsKYMMo

3. Presentation of the work in Chapter 6:
https://youtu.be/b-ZWaX-xYeE

4. Presentation of the work in Chapter 4 and 8:
https://youtu.be/l1COTtZFtRs
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